Skip to main content

Role of TLR4 in Sepsis

  • Chapter
  • First Online:
Severe Trauma and Sepsis
  • 794 Accesses

Abstract

Sepsis, a syndrome of physiologic pathologic and biochemical abnormalities induced by infection, is a major public health concern. The concept of sepsis changed as time goes by. According to the Third International Consensus Definitions for Sepsis and Septic Shock, sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. So far, the number of patients suffering from sepsis has been on rise. However, the diagnosis of sepsis is still difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vincent J, et al. Sepsis definitions: time for change. Lancet. 2013;381(9868):774–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mukherjee V, Evans L. Implementation of the surviving sepsis campaign guidelines. Curr Opin Crit Care. 2017;23(5):412–6.

    Article  PubMed  Google Scholar 

  3. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–91.

    Article  CAS  PubMed  Google Scholar 

  4. Singer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manu Shankar-Hari DAH. Differences in impact of definitional elements on mortality precludes international comparisons of sepsis epidemiology-a cohort study illustrating the need for standardized reporting. Crit Care Med. 2016;44(12):2223–30.

    Article  PubMed  Google Scholar 

  6. Allan J, Walkey TL, Lindenauer PK. Trends in sepsis and infection sources in the United States. Ann Am Thorac Soc. 2015;12(2):216–20.

    Article  Google Scholar 

  7. Yuki K, Murakami N. Sepsis pathophysiology and anesthetic consideration. Cardiovasc Hematol Disord Drug Targets. 2015;15(1):57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51.

    Article  CAS  PubMed  Google Scholar 

  9. Linde-Zwirble WT, Angus DC. Severe sepsis epidemiology: sampling, selection, and society. Crit Care. 2004;8(4):222–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weber GF, Swirski FK. Immunopathogenesis of abdominal sepsis. Langenbeck Arch Surg. 2014;399(1):1–9.

    Article  Google Scholar 

  11. Schorr CA, Zanotti S, Dellinger RP. Severe sepsis and septic shock. Virulence. 2013;5(1):190–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rhodes A, et al. Surviving sepsis campaign. Crit Care Med. 2017;45(3):486–552.

    Article  PubMed  Google Scholar 

  13. Opal SM, Girard TD, Ely EW. The immunopathogenesis of sepsis in elderly patients. CID. 2005;41(7):504–12.

    Article  Google Scholar 

  14. Henry J, Jacobsen W, Watkins LR, Hutchinson MR. Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction. Int Rev Neurobiol. 2014;118:129–63.

    Article  Google Scholar 

  15. Shizuo Akira SU, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  PubMed  CAS  Google Scholar 

  16. Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the drosophila embryo: the induction of polarity by the toll gene product. Cell. 1985;42:791–8.

    Article  CAS  PubMed  Google Scholar 

  17. Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors — from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  18. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2017;13:816–25.

    Article  CAS  Google Scholar 

  19. Takeuchi O, Hoshino K, Kawai T. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi F, Smith KD, Ozinsky A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–103.

    Article  CAS  PubMed  Google Scholar 

  21. Heil F. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9.

    Article  CAS  PubMed  Google Scholar 

  22. Sandra S, Diebold TKHH. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–31.

    Article  CAS  Google Scholar 

  23. Yarovinsky F, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005;308(5728):1626–9.

    Article  CAS  PubMed  Google Scholar 

  24. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197–216.

    Article  CAS  PubMed  Google Scholar 

  25. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71(1):635–700.

    Article  CAS  PubMed  Google Scholar 

  26. Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9.

    Article  CAS  PubMed  Google Scholar 

  27. O’Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–64.

    Article  PubMed  CAS  Google Scholar 

  28. Wright SD, Tobias PS, Ulevitch RJ. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med. 1989;170:1231–41.

    Article  CAS  PubMed  Google Scholar 

  29. Chattopadhyay S, et al. EGFR kinase activity is required for TLR4 signaling and the septic shock response. EMBO Rep. 2015;16:1535–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schumann RR, Leong SR, Flaggs GW. Structure and function of lipopolysaccharide binding protein. Science. 1990;249(4975):1429–31.

    Article  CAS  PubMed  Google Scholar 

  31. Nagai Y, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3(7):667–72.

    Article  CAS  PubMed  Google Scholar 

  32. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437–57.

    Article  CAS  PubMed  Google Scholar 

  33. Rowe DC, et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. PNAS. 2006;103(16):6299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De S, et al. Erlotinib protects against LPS-induced endotoxicity because TLR4 needs EGFR to signal. Proc Natl Acad Sci. 2015;112(31):9680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu Y, Yeh W, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  36. Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol. 2001;2(9):835–41.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki N, Suzuki S, Duncan GS. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002;416:750–4.

    Article  CAS  PubMed  Google Scholar 

  38. Lye E, et al. The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem. 2004;279(39):40653–8.

    Article  CAS  PubMed  Google Scholar 

  39. Li S, et al. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A. 2002;99(8):5567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lomaga MA, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13(8):1015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Janssens S, Beyaert R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci. 2002;27(9):474–82.

    Article  CAS  PubMed  Google Scholar 

  42. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.

    Article  CAS  PubMed  Google Scholar 

  43. Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 1996;8:205–15.

    Article  CAS  PubMed  Google Scholar 

  44. Takaoka A, Yanai H, Kondo S. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005;434:243–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hoebe K, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003;424:743–8.

    Article  CAS  PubMed  Google Scholar 

  46. Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  47. Oganesyan G, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature. 2005;439(7073):208–11.

    Article  PubMed  CAS  Google Scholar 

  48. Kagan JC, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat Immunol. 2008;9(4):361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ibrahim ZA, et al. RAGE and TLRs: relatives, friends or neighbours? Mol Immunol. 2013;56(4):739–44.

    Article  CAS  PubMed  Google Scholar 

  50. Fritz G. RAGE: a single receptor fits multiple ligands. Trends Biochem Sci. 2011;36(12):625–32.

    Article  CAS  PubMed  Google Scholar 

  51. Hori O, Brett J, Slattery T. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. J Biol Chem. 1995;270(43):25752–61.

    Article  CAS  PubMed  Google Scholar 

  52. Leclerc E, et al. Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009;1793(6):993–1007.

    Article  CAS  PubMed  Google Scholar 

  53. Taguchi A, Blood DC, Toro GD. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405:354–60.

    Article  CAS  PubMed  Google Scholar 

  54. Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009;52(11):2251–63.

    Article  CAS  PubMed  Google Scholar 

  55. Huttunen HJ, Kuja-Panula J, Rauvala H. Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem. 2002;277(41):38635–46.

    Article  CAS  PubMed  Google Scholar 

  56. Du Yan S, Schmidt AM, Anderson GM. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors binding proteins. J Biol Chem. 1993;269(13):9889–97.

    Google Scholar 

  57. Hreggvidsdottir HS, Lundberg AM, Aveberger A. High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med. 2012;18:224–30.

    Article  CAS  PubMed  Google Scholar 

  58. Hreggvidsdottir HS, Ostberg TH. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol. 2009;86:655–62.

    Article  CAS  PubMed  Google Scholar 

  59. Yamasoba D, et al. Peripheral HMGB1-induced hyperalgesia in mice: redox state-dependent distinct roles of RAGE and TLR4. J Pharmacol Sci. 2016;130(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  60. Boyd JH, et al. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res. 2008;102(10):1239–46.

    Article  CAS  PubMed  Google Scholar 

  61. Vogl T, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–9.

    Article  CAS  PubMed  Google Scholar 

  62. Ichikawa M, et al. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9(2):133–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Lent PLEM, et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis. 2008;67(12):1750–8.

    Article  PubMed  Google Scholar 

  64. English AR, Voeltz GK. Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol. 2012;15(2):169–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang D, et al. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci. 2010;107(31):13806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zou W, et al. RAB-10-dependent membrane transport is required for dendrite arborization. PLoS Genet. 2015;11(9):e1005484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. David II, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. BioEssays. 1998;20:41–8.

    Article  Google Scholar 

  68. Morandell S, et al. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics. 2008;8(21):4383–401.

    Article  CAS  PubMed  Google Scholar 

  69. Sun X, et al. The activation of EGFR promotes myocardial tumor necrosis factor-α production and cardiac failure in endotoxemia. Oncotarget. 2015;6(34):35478–95.

    PubMed  PubMed Central  Google Scholar 

  70. Wee P, et al. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis. Cell Signal. 2015;27(3):638–51.

    Article  CAS  PubMed  Google Scholar 

  71. Hackel PO, et al. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol. 1999;11(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kuper C, Beck FX, Neuhofer W. Toll-like receptor 4 activates NF-B and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol Renal Physiol. 2011;302(1):F38–46.

    Article  PubMed  CAS  Google Scholar 

  73. Liu K, Anderson GP, Bozinovski S. DNA vector augments inflammation in epithelial cells via EGFR-dependent regulation of TLR4 and TLR2. Am J Respir Cell Mol Biol. 2008;39(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  74. Hwang JS, et al. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Sci Rep. 2015;5(1):15971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med. 2004;255(3):332–43.

    Article  CAS  PubMed  Google Scholar 

  76. Gardella S, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3(10):995–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29(1):139–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang H, Bloom O, Zhang M. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.

    Article  CAS  PubMed  Google Scholar 

  79. Yang H, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. PNAS. 2004;101(1):296–301.

    Article  CAS  PubMed  Google Scholar 

  80. Levy RM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1538–44.

    Article  CAS  PubMed  Google Scholar 

  81. Andreas Rickenbacher JHJP. Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J Hepatol. 2014;61:301–8.

    Article  PubMed  CAS  Google Scholar 

  82. Calandra T, et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med. 2000;6(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  83. Calandra T, et al. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of gram-positive bacteria. Proc Natl Acad Sci U S A. 1998;95(19):11383–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Calandra T, Bernhagen J, Christine M. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377(7):68–71.

    Article  CAS  PubMed  Google Scholar 

  85. Bozza M, Satoskar AR, Lin G. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med. 1999;189(2):341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, J. (2019). Role of TLR4 in Sepsis. In: Fu, X., Liu, L. (eds) Severe Trauma and Sepsis. Springer, Singapore. https://doi.org/10.1007/978-981-13-3353-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3353-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3352-1

  • Online ISBN: 978-981-13-3353-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics