Skip to main content

Advertisement

Log in

Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hypoxia and increased levels of inflammatory cytokines in the joints are characteristics of rheumatoid arthritis (RA). However, the effects of hypoxia and tumor necrosis factor-α (TNF-α) on interleukin (IL)-6 and IL-8 production on fibroblast-like synoviocytes (FLSs) remain to be clarified. This study aimed to explore how hypoxia and TNF-α affect the expression of IL-6 and IL-8 in human FLSs isolated from RA patients. Hypoxia or TNF-α treatment alone significantly increased the expression and promoter activity of IL-6, IL-8, and hypoxia-inducible factor-1α (HIF-1α). Treatment of hypoxic FLSs with TNF-α further significantly elevated the expression of these cytokines and enhanced promoter activity of HIF-1α, which was abrogated by treatment with the HIF-1α inhibitor YC-1. Similarly, TNF-α alone elevated the phosphorylation and promoter activity of nuclear factor-κBp65 (NF-κBp65) in the FLSs. These effects were further enhanced by the combined treatment of hypoxia and TNFα but were attenuated by the NF-κB inhibitor BAY11-7082. NF-κB-p65 inhibition decreased the effect of TNF-α on HIF-1α upregulation in the FLSs in response to hypoxia. The combination of hypoxia and TNF-α also significantly upregulated transforming growth factor-β-activated kinase 1 (TAK1) expression, and silencing TAK1 dramatically decreased NF-κB-p65, HIF-1α, IL-6, and IL-8 expression under the same conditions. Our results indicate that hypoxia and TNF-α synergistically increase IL-6 and IL-8 expression in human FLSs via enhancing TAK1/NF-κB/HIF-1α signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Materials Availability

Not applicable.

References

  1. Korb-Pap, A., J. Bertrand, J. Sherwood, and T. Pap. 2016. Stable activation of fibroblasts in rheumatic arthritis - causes and consequences. Rheumatology 55: 64–67.

    Article  Google Scholar 

  2. Huber, L.C., O. Distler, I. Tarner, R.E. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45: 669–675.

    Article  CAS  PubMed  Google Scholar 

  3. Yokota, K., T. Miyazaki, M. Hirano, Y. Akiyama, and T. Mimura. 2006. Simvastatin inhibits production of interleukin 6 (IL-6) and IL-8 and cell proliferation induced by tumor necrosis factor-alpha in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Journal of Rheumatology 33: 463–471.

    CAS  PubMed  Google Scholar 

  4. Luo, X.J., X.R. Mo, and L.L. Zhou. 2012. The effect of Hsp72 on IL-6, IL-8 expression and activation of NF-kappaB in synoviocytes of rheumatoid arthritis. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28: 336–339.

    CAS  PubMed  Google Scholar 

  5. Li, Y., and W. Zhang. 2017. IL-6: The next key target for rheumatoid arthritis after TNF-alpha. Sheng Wu Gong Cheng Xue Bao 33: 36–43.

    PubMed  Google Scholar 

  6. Quinonez-Flores, C.M., S.A. Gonzalez-Chavez, and C. Pacheco-Tena. 2016. Hypoxia and its implications in rheumatoid arthritis. Journal of Biomedical Science 23: 62.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fearon, U., M. Canavan, M. Biniecka, and D.J. Veale. 2016. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nature Reviews Rheumatology 12: 385–397.

    Article  CAS  PubMed  Google Scholar 

  8. Muz, B., M.N. Khan, S. Kiriakidis, and E.M. Paleolog. 2009. Hypoxia The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Research & Therapy 11: 201.

    Article  Google Scholar 

  9. Niu, X., Y. Chen, L. Qi, G. Liang, Y. Wang, L. Zhang, Y. Qu, and W. Wang. 2019. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1alpha pathway. Cytokine 113: 117–127.

    Article  CAS  PubMed  Google Scholar 

  10. D’Ignazio, L., and S. Rocha. 2016. Hypoxia induced NF-kappaB. Cells 5: 10.

    PubMed  Google Scholar 

  11. Deng, W., X. Feng, X. Li, D. Wang, and L. Sun. 2016. Hypoxia-inducible factor 1 in autoimmune diseases. Cellular Immunology 303: 7–15.

    Article  CAS  PubMed  Google Scholar 

  12. Guan, S.Y., R.X. Leng, J.H. Tao, X.P. Li, D.Q. Ye, N. Olsen, S.G. Zheng, and H.F. Pan. 2017. Hypoxia-inducible factor-1alpha: A promising therapeutic target for autoimmune diseases. Expert Opinion on Therapeutic Targets 21: 715–723.

    Article  CAS  PubMed  Google Scholar 

  13. Guo, X., and G. Chen. 2020. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Frontiers in Immunology 11: 1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryu, J.H., C.S. Chae, J.S. Kwak, H. Oh, Y. Shin, Y.H. Huh, C.G. Lee, Y.W. Park, C.H. Chun, Y.M. Kim, S.H. Im, and J.S. Chun. 2014. Hypoxia-inducible factor-2alpha is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biology 12: e1001881.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nonomura, Y., F. Mizoguchi, A. Suzuki, T. Nanki, H. Kato, N. Miyasaka, and H. Kohsaka. 2009. Hypoxia-induced abrogation of contact-dependent inhibition of rheumatoid arthritis synovial fibroblast proliferation. Journal of Rheumatology 36: 698–705.

    Article  CAS  PubMed  Google Scholar 

  16. Sabi, E.M., A. Singh, Z.M. Althafar, T. Behl, A. Sehgal, S. Singh, N. Sharma, S. Bhatia, A. Al-Harrasi, H.M. Alqahtani, and S. Bungau. 2022. Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 30: 737–748.

    Article  CAS  PubMed  Google Scholar 

  17. Malkov, M.I., C.T. Lee, and C.T. Taylor. 2021. Regulation of the hypoxia-inducible factor (HIF) by pro-inflammatory cytokines. Cells 10: 2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thornton, R.D., P. Lane, R.C. Borghaei, E.A. Pease, J. Caro, and E. Mochan. 2000. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. The Biochemical Journal 350 (Pt 1): 307–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hellwig-Burgel, T., K. Rutkowski, E. Metzen, J. Fandrey, and W. Jelkmann. 1999. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567.

    Article  CAS  PubMed  Google Scholar 

  20. Westra, J., E. Brouwer, R. Bos, M.D. Posthumus, B. Doornbos-van der Meer, C.G. Kallenberg, and P.C. Limburg. 2007. Regulation of cytokine-induced HIF-1alpha expression in rheumatoid synovial fibroblasts. Annals of the New York Academy of Sciences 1108: 340–348.

    Article  CAS  PubMed  Google Scholar 

  21. Georganas, C., H. Liu, H. Perlman, A. Hoffmann, B. Thimmapaya, and R.M. Pope. 2000. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: The dominant role for NF-kappa B but not C/EBP beta or c-Jun. The Journal of Immunology 165: 7199–7206.

    Article  CAS  PubMed  Google Scholar 

  22. Luo, X., X. Zuo, Y. Zhou, B. Zhang, Y. Shi, M. Liu, K. Wang, D.R. McMillian, and X. Xiao. 2008. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy 10: R41.

    Article  Google Scholar 

  23. Mo, X.R., J.W. Xie, G.J. Lv, Y.P. Ke, and X.J. Luo. 2017. Effects of TAK gene silencing on the expressions of IL-6 and IL-8 induced by TNF-alpha in fibroblast-like synoviocytes. Zhongguo Ying Yong Sheng Li Xue Za Zhi 33: 471–475.

    PubMed  Google Scholar 

  24. Zhang, J., F.F. Gao, and J. Xie. 2021. LncRNA linc00152/NF-kappaB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 9: 681–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, G., Y. Zhang, Y. Qian, H. Zhang, S. Guo, M. Sunagawa, T. Hisamitsu, and Y. Liu. 2013. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-kappaB/HIF-1alpha pathway. Molecular Immunology 53: 227–236.

    Article  CAS  PubMed  Google Scholar 

  26. Hui, W., C. Zhao, and S.G. Bourgoin. 2017. Differential effects of inhibitor combinations on lysophosphatidic acid-mediated chemokine secretion in unprimed and tumor necrosis factor-alpha-primed synovial fibroblasts. Frontiers in Pharmacology 8: 848.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fabre, C., G. Carvalho, E. Tasdemir, T. Braun, L. Ades, J. Grosjean, S. Boehrer, D. Metivier, S. Souquere, G. Pierron, P. Fenaux, and G. Kroemer. 2007. NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 4071–4083.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor, C.T., and E.P. Cummins. 2009. The role of NF-kappaB in hypoxia-induced gene expression. Annals of the New York Academy of Sciences 1177: 178–184.

    Article  CAS  PubMed  Google Scholar 

  29. Maxwell, P.J., R. Gallagher, A. Seaton, C. Wilson, P. Scullin, J. Pettigrew, I.J. Stratford, K.J. Williams, P.G. Johnston, and D.J. Waugh. 2007. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene 26: 7333–7345.

    Article  CAS  PubMed  Google Scholar 

  30. Akimoto, R., T. Tanaka, T. Nakano, Y. Hozumi, K. Kawamae, and K. Goto. 2020. DGKzeta depletion attenuates HIF-1alpha induction and SIRT1 expression, but enhances TAK1-mediated AMPKalpha phosphorylation under hypoxia. Cellular Signalling 71: 109618.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, Y.A., H.M. Choi, S.H. Lee, S.J. Hong, H.I. Yang, M.C. Yoo, and K.S. Kim. 2012. Hypoxia differentially affects IL-1beta-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1alpha-dependent manner. Rheumatology (Oxford) 51: 443–450.

    Article  CAS  PubMed  Google Scholar 

  32. Ahn, J.K., E.M. Koh, H.S. Cha, Y.S. Lee, J. Kim, E.K. Bae, and K.S. Ahn. 2008. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 47: 834–839.

    Article  CAS  PubMed  Google Scholar 

  33. Charbonneau, M., K. Harper, F. Grondin, M. Pelmus, P.P. McDonald, and C.M. Dubois. 2007. Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. Journal of Biological Chemistry 282: 33714–33724.

    Article  CAS  PubMed  Google Scholar 

  34. Islam, S.M.T., J. Won, M. Khan, M.D. Mannie, and I. Singh. 2021. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 164: 31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor, C.T., G. Doherty, P.G. Fallon, and E.P. Cummins. 2016. Hypoxia-dependent regulation of inflammatory pathways in immune cells. The Journal of Clinical Investigation 126: 3716–3724.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, X., H. Kimura, K. Hirota, K. Kasuno, K. Torii, T. Okada, H. Kurooka, Y. Yokota, and H. Yoshida. 2005. Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney International 68: 569–583.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, S.H., Y.J. Lee, and H.J. Han. 2010. Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: Involvement of MAPKs, NF-kappaB, and HIF-1alpha. Journal of Cellular Physiology 222: 574–585.

    CAS  PubMed  Google Scholar 

  38. Cetin, A., T. Kaya, N. Demirkoprulu, B. Karadas, B. Duran, and M. Cetin. 2004. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits the spontaneous contractions of isolated pregnant rat myometrium. Journal of Pharmacological Sciences 94: 19–24.

    Article  CAS  PubMed  Google Scholar 

  39. Flores-Costa, R., J. Alcaraz-Quiles, E. Titos, C. Lopez-Vicario, M. Casulleras, M. Duran-Guell, B. Rius, A. Diaz, K. Hall, C. Shea, R. Sarno, M. Currie, J.L. Masferrer, and J. Claria. 2018. The soluble guanylate cyclase stimulator IW-1973 prevents inflammation and fibrosis in experimental non-alcoholic steatohepatitis. British Journal of Pharmacology 175: 953–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, R.S. Johnson, G.G. Haddad, and M. Karin. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Culver, C., A. Sundqvist, S. Mudie, A. Melvin, D. Xirodimas, and S. Rocha. 2010. Mechanism of hypoxia-induced NF-kappaB. Molecular and Cellular Biology 30: 4901–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lian, L.H., Q. Jin, S.Z. Song, Y.L. Wu, T. Bai, S. Jiang, Q. Li, N. Yang, and J.X. Nan. 2013. Ginsenoside Rh2 downregulates LPS-induced NF- kappa B activation through inhibition of TAK1 phosphorylation in RAW 264.7 murine macrophage. Evidence-Based Complementary and Alternative Medicine 2013: 646728.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou, Y., T. Tao, G. Liu, X. Gao, Y. Gao, Z. Zhuang, Y. Lu, H. Wang, W. Li, L. Wu, D. Zhang, and C. Hang. 2021. TRAF3 mediates neuronal apoptosis in early brain injury following subarachnoid hemorrhage via targeting TAK1-dependent MAPKs and NF-kappaB pathways. Cell Death & Disease 12: 10.

    Article  CAS  Google Scholar 

  44. Hammaker, D.R., D.L. Boyle, M. Chabaud-Riou, and G.S. Firestein. 2004. Regulation of c-Jun N-terminal kinase by MEKK-2 and mitogen-activated protein kinase kinase kinases in rheumatoid arthritis. The Journal of Immunology 172: 1612–1618.

    Article  CAS  PubMed  Google Scholar 

  45. Luo, X., Y. Chen, G. Lv, Z. Zhou, J. Chen, X. Mo, and J. Xie. 2017. Adenovirus-mediated small interfering RNA targeting TAK1 ameliorates joint inflammation with collagen-induced arthritis in mice. Inflammation 40: 894–903.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (Grant number LTY21H100001) and the College Students’ Innovation and Entrepreneurship Training Program Project of China (Grant number 202110350052,202210350058).

Author information

Authors and Affiliations

Authors

Contributions

W.G. designed the experiments and edited the final manuscript. W. J. and L. X. collected synovial tissue samples and analyzed the data. W. Q. and Y. R. performed the experiments and data analysis. L. X. conceived and designed the study and drafted the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Xinjing Luo.

Ethics declarations

Ethics Approval

The experiments were performed according to the protocols approved by the Ethics Committee of the Affiliated Hospital of Taizhou University (2020-sc-032).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, J., Li, X. et al. Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling. Inflammation 46, 912–924 (2023). https://doi.org/10.1007/s10753-022-01779-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01779-x

KEY WORDS

Navigation