Skip to main content

Advertisement

Log in

Glycitin Suppresses Cartilage Destruction of Osteoarthritis in Mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA), a chronic joint disease, is characterized by cartilage surface erosion, subchondral bone rebuilding, and formation of osteophytes. To date, the nosogenesis and underlying mechanisms of OA have not yet been elucidated. However, it is widely accepted that TNF-α is a crucial cytokine in the development of OA. Glycitin, a natural isoflavone extracted from legumes, affects physiological reactions and pathological responses. Recently, the anti-inflammatory effect of glycitin has been reported. However, the function of glycitin in cartilage degeneration in OA remains to be investigated. In the current study, primary murine chondrocytes were isolated and stimulated by TNF-α to evaluate the anti-inflammatory effects and protective function of glycitin in chondrocytes. In vivo, the ACLT mouse model, a frequently-used OA model, was used to further examine the therapeutic role of glycitin in cartilage degeneration and inflammation in OA. Consequently, glycitin functions were examined both in vivo and in vitro. Moreover, the underlying mechanism of action of glycitin was investigated and was found to involve the NF-κB signaling pathway. Collectively, this study suggests that glycitin can be potentially used for the treatment of joint degenerative diseases, including OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thielen, N.G.M., P.M. van der Kraan, and A.P.M. van Caam. 2019. TGFbeta/BMP signaling pathway in cartilage homeostasis. Cells 8.

  2. Zhu, S., D. Makosa, B. Miller, and T.M. Griffin. 2019. Glutathione as a mediator of cartilage oxidative stress resistance and resilience during aging and osteoarthritis. Connective Tissue Research: 1–14.

  3. Teirlinck, C.H., D.M.J. Dorleijn, P.K. Bos, J.B.M. Rijkels-Otters, S.M.A. Bierma-Zeinstra, and P.A.J. Luijsterburg. 2019. Prognostic factors for progression of osteoarthritis of the hip: a systematic review. Arthritis Research & Therapy 21: 192.

    Article  CAS  Google Scholar 

  4. Lane, N.E., K. Shidara, and B.L. Wise. 2017. Osteoarthritis year in review 2016: clinical. Osteoarthritis and Cartilage 25: 209–215.

    Article  CAS  Google Scholar 

  5. Flemming, D.J., and C.N. Gustas-French. 2017. Rapidly progressive osteoarthritis: a review of the clinical and radiologic presentation. Current Rheumatology Reports 19: 42.

    Article  Google Scholar 

  6. Haj-Mirzaian A, Mohajer B, Guermazi A, Conaghan PG, Lima JAC, Blaha MJ, et al. 2019. Statin use and knee osteoarthritis outcome measures according to the presence of Heberden nodes: results from the osteoarthritis initiative. Radiology 190557.

  7. Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, and H. Fahmi. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology 7: 33–42.

    Article  CAS  Google Scholar 

  8. Zhao, Y.P., B. Liu, Q.Y. Tian, J.L. Wei, B. Richbourgh, and C.J. Liu. 2015. Progranulin protects against osteoarthritis through interacting with TNF-alpha and beta-Catenin signalling. Annals of the Rheumatic Diseases 74: 2244–2253.

    Article  CAS  Google Scholar 

  9. Hossain, F.M., Y. Hong, Y. Jin, J. Choi, and Y. Hong. 2019. Physiological and pathological role of circadian hormones in osteoarthritis: dose-dependent or time-dependent? Journal of Clinical Medicine 8.

  10. Lai, Y., X. Bai, Y. Zhao, Q. Tian, B. Liu, E.A. Lin, Y. Chen, B. Lee, C.T. Appleton, F. Beier, X.P. Yu, and C.J. Liu. 2014. ADAMTS-7 forms a positive feedback loop with TNF-alpha in the pathogenesis of osteoarthritis. Annals of the Rheumatic Diseases 73: 1575–1584.

    Article  CAS  Google Scholar 

  11. Zhao, Y., Y. Li, R. Qu, X. Chen, W. Wang, C. Qiu, B. Liu, X. Pan, L. Liu, K. Vasilev, J. Hayball, S. Dong, and W. Li. 2019. Cortistatin binds to TNF-alpha receptors and protects against osteoarthritis. Ebiomedicine 41: 556–570.

    Article  Google Scholar 

  12. Mei, J., J. Sun, J. Wu, and X. Zheng. 2019. Liraglutide suppresses TNF-alpha-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. American Journal of Translational Research 11: 4800–4808.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Moreno, D., G. Jimenez, P. Galvez-Martin, G. Rus, and J.A. Marchal. 1865. Cartilage biomechanics: a key factor for osteoarthritis regenerative medicine. Biochimica et Biophysica Acta - Molecular Basis of Disease 2019: 1067–1075.

    Google Scholar 

  14. Hermann, J., R.W. Lipp, A. Dunzinger, C. Spreizer, G. Schaffler, H. Kvaternik, et al. 2014. Anti-TNF scintigraphy to assess TNF-alpha-associated joint inflammation in rheumatoid arthritis and osteoarthritis. Clinical and Experimental Rheumatology 32: 614.

    PubMed  Google Scholar 

  15. Nelson, A.E. 2018. Osteoarthritis year in review 2017: Clinical. Osteoarthritis and Cartilage 26: 319–325.

    Article  CAS  Google Scholar 

  16. Ibi, M. 2019. Inflammation and temporomandibular joint derangement. Biological & Pharmaceutical Bulletin 42: 538–542.

    Article  CAS  Google Scholar 

  17. Wang, A., D.J. Leong, L. Cardoso, and H.B. Sun. 2018. Nutraceuticals and osteoarthritis pain. Pharmacology & Therapeutics 187: 167–179.

    Article  CAS  Google Scholar 

  18. Leong, D.J., M. Choudhury, D.M. Hirsh, J.A. Hardin, N.J. Cobelli, and H.B. Sun. 2013. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis. International Journal of Molecular Sciences 14: 23063–23085.

    Article  Google Scholar 

  19. Zhang, L., J. Chen, W. Chai, M. Ni, X. Sun, and D. Tian. 2016. Glycitin regulates osteoblasts through TGF-beta or AKT signaling pathways in bone marrow stem cells. Experimental and Therapeutic Medicine 12: 3063–3067.

    Article  CAS  Google Scholar 

  20. Chen, Y., S. Guo, K. Jiang, Y. Wang, M. Yang, and M. Guo. 2019. Glycitin alleviates lipopolysaccharide-induced acute lung injury via inhibiting NF-kappaB and MAPKs pathway activation in mice. International Immunopharmacology 75: 105749.

    Article  CAS  Google Scholar 

  21. van der Velpen, V., A. Geelen, P.C. Hollman, E.G. Schouten, P. van’t Veer, and L.A. Afman. 2014. Isoflavone supplement composition and equol producer status affect gene expression in adipose tissue: a double-blind, randomized, placebo-controlled crossover trial in postmenopausal women. The American Journal of Clinical Nutrition 100: 1269–1277.

    Article  Google Scholar 

  22. Choi, I., Y. Kim, Y. Park, H. Seog, and H. Choi. 2007. Anti-obesity activities of fermented soygerm isoflavones by Bifidobacterium breve. Biofactors 29: 105–112.

    Article  CAS  Google Scholar 

  23. Seo, G.Y., Y. Lim, D. Koh, J.S. Huh, C. Hyun, Y.M. Kim, et al. 2017. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Experimental & Molecular Medicine 49: e302.

    Article  CAS  Google Scholar 

  24. Kim, E.Y., K.B. Hong, H.J. Suh, and H.S. Choi. 2015. Protective effects of germinated and fermented soybean extract against tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 cells and in rats. Food & Function 6: 3512–3521.

    Article  CAS  Google Scholar 

  25. Kang, K.A., R. Zhang, M.J. Piao, K.H. Lee, B.J. Kim, S.Y. Kim, H.S. Kim, D.H. Kim, H.J. You, and J.W. Hyun. 2007. Inhibitory effects of glycitein on hydrogen peroxide induced cell damage by scavenging reactive oxygen species and inhibiting c-Jun N-terminal kinase. Free Radical Research 41: 720–729.

    Article  CAS  Google Scholar 

  26. Valachovicova, T., V. Slivova, H. Bergman, J. Shuherk, and D. Sliva. 2004. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. International Journal of Oncology 25: 1389–1395.

    CAS  PubMed  Google Scholar 

  27. Zhang, B., H. Chen, J. Ouyang, Y. Xie, L. Chen, Q. Tan, et al. 2019. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1beta and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy: 1–17.

  28. Li, W., W. Wang, L. Liu, R. Qu, X. Chen, C. Qiu, J. Li, J. Hayball, L. Liu, J. Chen, X. Wang, X. Pan, and Y. Zhao. 2019. GDF11 antagonizes TNF-alpha-induced inflammation and protects against the development of inflammatory arthritis in mice. The FASEB Journal 33: 3317–3329.

    Article  CAS  Google Scholar 

  29. Hosseinzadeh, A., S.K. Kamrava, M.T. Joghataei, R. Darabi, A. Shakeri-Zadeh, M. Shahriari, R.J. Reiter, H. Ghaznavi, and S. Mehrzadi. 2016. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. Journal of Pineal Research 61: 411–425.

    Article  CAS  Google Scholar 

  30. Dieppe, P., S. Goldingay, and M. Greville-Harris. 2016. The power and value of placebo and nocebo in painful osteoarthritis. Osteoarthritis and Cartilage 24: 1850–1857.

    Article  CAS  Google Scholar 

  31. Nees, T.A., N. Rosshirt, T. Reiner, M. Schiltenwolf, and B. Moradi. 2019. Inflammation and osteoarthritis-related pain. Schmerz 33: 4–12.

    Article  CAS  Google Scholar 

  32. Rainsford, K.D., A.L. Parke, M. Clifford-Rashotte, and W.F. Kean. 2015. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 23: 231–269.

    Article  CAS  Google Scholar 

  33. Mobasheri, A., Y. Henrotin, H.K. Biesalski, and M. Shakibaei. 2012. Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health. International Journal of Molecular Sciences 13: 4202–4232.

    Article  CAS  Google Scholar 

  34. Rigoglou, S., and A.G. Papavassiliou. 2013. The NF-kappaB signalling pathway in osteoarthritis. The International Journal of Biochemistry & Cell Biology 45: 2580–2584.

    Article  CAS  Google Scholar 

  35. Liang, H., H. Wang, L. Luo, S. Fan, L. Zhou, Z. Liu, S. Yao, X. Zhang, K. Zhong, H. Zhao, and Z. Zha. 2019. Toll-like receptor 4 promotes high glucose-induced catabolic and inflammatory responses in chondrocytes in an NF-kappaB-dependent manner. Life Sciences 228: 258–265.

    Article  CAS  Google Scholar 

  36. Xie, L., H. Xie, C. Chen, Z. Tao, C. Zhang, and L. Cai. 2019. Inhibiting the PI3K/AKT/NF-kappaB signal pathway with nobiletin for attenuating the development of osteoarthritis: in vitro and in vivo studies. Food & Function 10: 2161–2175.

    Article  CAS  Google Scholar 

  37. Li, X.H., J.C. Zhang, S.F. Sui, and M.S. Yang. 2005. Effect of daidzin, genistin, and glycitin on osteogenic and adipogenic differentiation of bone marrow stromal cells and adipocytic transdifferentiation of osteoblasts. Acta Pharmacologica Sinica 26: 1081–1086.

    Article  Google Scholar 

  38. Li, H., D. Wang, Y. Yuan, and J. Min. 2017. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Research & Therapy 19: 248.

    Article  Google Scholar 

  39. Guo, L., X. Wei, Z. Zhang, X. Wang, C. Wang, P. Li, et al. 2019. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Research & Therapy 21: 109.

    Article  Google Scholar 

  40. Honvo, G., V. Leclercq, A. Geerinck, T. Thomas, N. Veronese, A. Charles, V. Rabenda, C. Beaudart, C. Cooper, J.Y. Reginster, and O. Bruyère. 2019. Safety of topical non-steroidal anti-inflammatory drugs in osteoarthritis: outcomes of a systematic review and meta-analysis. Drugs & Aging 36: 45–64.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2019MH05, ZR2019MH075, and BS2015SW028), the Key Research and Development Projects of Shandong Province (Nos. 2015GSF118115 and 2019GSF108152), the Cross-disciplinary Fund of Shandong University (Grant No. 2018JC007), and the National Natural Science Foundation of China (Grant Nos. 81501880 and 81602761).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Hao Li, Xin Pan.

Performed the experiments: Wenhan Wang, Ruitong Yang, Minfa Zhang, Jiayi Li, Jiangfan Peng, Mingyang Xu, Yunpeng Zhao.

Corresponding authors

Correspondence to Hao Li or Xin Pan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yang, R., Zhang, M. et al. Glycitin Suppresses Cartilage Destruction of Osteoarthritis in Mice. Inflammation 43, 1312–1322 (2020). https://doi.org/10.1007/s10753-020-01210-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01210-3

KEY WORDS

Navigation