Skip to main content

Advertisement

Log in

A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kirkwood, K.L., J.A. Cirelli, J.E. Rogers, and W.V. Giannobile. 2007. Novel host response therapeutic approaches to treat periodontal diseases. Periodontology 2000 43: 294–315.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee, H.-J., I.-K. Kang, C.-P. Chung, and S.-M. Choi. 1995. The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. Journal of Clinical Periodontology 22: 885–890.

    Article  CAS  PubMed  Google Scholar 

  3. Tsai, C., Y. Ho, and C. Chen. 1995. Levels of interleukin-lß and interleukin-8 in gingival crevicular fluids in adult periodontitis. Journal of Periodontology 66: 852–859.

    Article  CAS  PubMed  Google Scholar 

  4. Leng, S.X., and J.A. Elias. 1997. Interleukin-11 inhibits macrophage interleukin-12 production. Journal of Immunology 159: 2161–2168.

    CAS  Google Scholar 

  5. Haffajee, A., and S. Socransky. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 5: 78–111.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson, S.R., C. Peters, P. Saftig, and D. Bromme. 2009. Cathepsin K Activity-dependent Regulation of Osteoclast Actin Ring Formation and Bone Resorption. The Journal of Biological Chemistry 284: 2584–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Graves, D.T., and R.A. Kayal. 2008. Diabetic complications and dysregulated innate immunity. Front. Biosci. J. Virtual Libr. 13: 1227.

    Article  CAS  Google Scholar 

  8. Baynes, J. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412.

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt, A., E. Weldman, E. Lalla, S. Yan, O. Hori, R. Cao, et al. 1996. Advanced glycation endproducts (AGEs) induce Oxidant Stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. Journal of Periodontal Research 31: 308–315.

    Article  Google Scholar 

  10. Lalla, E., I.B. Lamster, M. Feit, L. Huang, A. Spessot, W. Qu, et al. 2000. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. The Journal of Clinical Investigation 105: 1117–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golub, L.M., J.B. Payne, R.A. Reinhardt, and G. Nieman. 2006. Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical “two-hit” model. Journal of Dental Research 85: 102–105.

    Article  CAS  PubMed  Google Scholar 

  12. Engebretson, S.P., and J. Hey-Hadavi. 2011. Sub-antimicrobial doxycycline for periodontitis reduces hemoglobin A1c in subjects with type 2 diabetes: A pilot study. Pharmacological Research 64: 624–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto, Y., A. Harashima, H. Saito, K. Tsuneyama, S. Munesue, S. Motoyoshi, et al. 2011. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. Journal of Immunology 186: 3248–3257.

    Article  CAS  Google Scholar 

  14. Xie, J., J.D. Méndez, V. Méndez-Valenzuela, and M.M. Aguilar-Hernández. 2013. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling 25: 2185–2197.

    Article  CAS  PubMed  Google Scholar 

  15. Ibrahim, Z.A., C.L. Armour, S. Phipps, and M.B. Sukkar. 2013. RAGE and TLRs: Relatives, friends or neighbours? Molecular Immunology 56: 739–744.

    Article  CAS  PubMed  Google Scholar 

  16. Agati, V., and A. Schmidt. 2010. RAGE and the pathogenesis of Chronic Kidney disease. Nature Reviews. Nephrology 6: 352–360.

    Article  PubMed  Google Scholar 

  17. Srikanth, V., A. Maczurek, T. Phan, M. Steele, B. Westcott, D. Juskiw, et al. 2011. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging 32: 763–777.

    Article  CAS  PubMed  Google Scholar 

  18. Bickel, M., B. Axtelius, C. Solioz, and R. Attström. 2001. Cytokine gene expression in chronic periodontitis. Journal of Clinical Periodontology 28: 840–847.

    Article  CAS  PubMed  Google Scholar 

  19. Dulbecco, P., and V. Savarino. 2013. Therapeutic potential of curcumin in digestive diseases. World Journal of Gastroenterology 19: 9256.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y., Y. Gu, H-M. Lee, E. Hambardjieva, K. Vrankova, L.M. Golub, et al. 2012. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins. Current Medicinal Chemistry 19: 4348–4358.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y., L.M. Golub, F. Johnson, and A. Wishnia. 2012. pKa, zinc-and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Current Medicinal Chemistry 19: 4367–4375.

    Article  CAS  PubMed  Google Scholar 

  22. Katzap E, Goldstein MJ, Shah NV, Schwartz J, Razzano P, Golub LM, et al. (2011). The chondroprotective capability of curcumin (Curcuma longa) and its derivatives against IL-1β and OsM-mediated chrondrolysis. Transaction Orthopaedic Research Society;Abstract # 36.

  23. Elburki, M.S., C. Rossa Jr., M.R. Guimaraes, M. Goodenough, H-M. Lee, F.A. Curylofo, et al. 2014. A novel chemically modified curcumin reduces severity of experimental periodontal disease in rats: Initial observations. Mediators of Inflammation 2014: 1–10.

    Article  Google Scholar 

  24. Botchkina, G.I., E.S. Zuniga, R.H. Rowehl, R. Park, R. Bhalla, A.B. Bialkowska, et al. 2013. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PloS One 8: e69884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie, H., C. Wang, X. Wu, X. Liu, S. Qiao, C. Liu, et al. 2012. Parthenolide attenuates LPS-induced activation of NF-κB in a time-dependent manner in rat myocardium. The Journal of Biomedical Research 26: 37–43.

    Article  PubMed  Google Scholar 

  26. Roy, S.K., D. Kendrick, B.D. Sadowitz, L. Gatto, K. Snyder, J.M. Satalin, et al. 2011. Jack of all trades: Pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacological Research 64: 580–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anrather, J., G. Racchumi, and C. Iadecola. 2005. cis-acting element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. The Journal of Biological Chemistry 280: 244–252.

    Article  CAS  PubMed  Google Scholar 

  28. Ulevitch, R.J. 2004. Therapeutics targeting the innate immune system. Nature Reviews. Immunology 4: 512–520.

    Article  CAS  PubMed  Google Scholar 

  29. Singh, S., and B.B. Aggarwal. 1995. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). The Journal of Biological Chemistry 270: 24995–25000.

    Article  CAS  PubMed  Google Scholar 

  30. Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal. 2007. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics 4: 807–818.

    Article  CAS  PubMed  Google Scholar 

  31. Li, Q., H. Yu, R. Zinna, K. Martin, B. Herbert, A. Liu, et al. 2011. Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. The Journal of Pharmacology and Experimental Therapeutics 336: 633–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sartori, R., F. Li, and K.L. Kirkwood. 2009. MAP kinase phosphatase-1 protects against inflammatory bone loss. Journal of Dental Research 88: 1125–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Travan, S., F. Li, N.J. D’Silva, E.H. Slate, and K.L. Kirkwood. 2013. Differential expression of mitogen activating protein kinases in periodontitis. Journal of Clinical Periodontology 40: 757–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garcia de Aquino, S., F.R. Manzolli Leite, D.R. Stach-Machado, J.A. Francisco da Silva, L.C. Spolidorio, and C. Rossa. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Sciences 84: 745–754.

    Article  CAS  PubMed  Google Scholar 

  35. de Souza, J., C. Rossa Jr., G. Garlet, A. Nogueira, and J. Cirelli. 2012. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. Journal of Applied Oral Science 20: 128–138.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee, J., S. Kumar, D. Griswold, D. Underwood, B. Votta, and J. Adams. 2000. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47: 185–201.

    Article  CAS  PubMed  Google Scholar 

  37. Tak, P.P., and G.S. Firestein. 2001. NF-κB: a key role in inflammatory diseases. The Journal of Clinical Investigation 107: 7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elburki, M.S., D.D. Moore, N.G. Terezakis, Y. Zhang, H-M. Lee, F. Johnson, et al. 2017. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. Journal of Periodontal Research 52:186–200. 

  39. Epstein, F.H., P.J. Barnes, and M. Karin. 1997. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336: 1066–1071.

    Article  Google Scholar 

  40. Patil, C., X. Zhu, C. Rossa, Y.J. Kim, and K.L. Kirkwood. 2004. p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts. Immunological Investigations 33: 213–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rossa, C. Jr., M. Liu, C. Patil, and K.L. Kirkwood. 2005. MKK3/6—p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1β and TNF-α in immortalized periodontal ligament fibroblasts. Matrix Biology 24: 478–488.

    Article  CAS  PubMed  Google Scholar 

  42. Mbalaviele, G. 2006. Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. The Journal of Pharmacology and Experimental Therapeutics 317: 1044–1053.

    Article  CAS  PubMed  Google Scholar 

  43. Rossa, C. Jr., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1 β and TNF-α-induced RANKL expression in bone marrow stromal cells. Journal of Interferon & Cytokine Research 26: 719–729.

    Article  CAS  Google Scholar 

  44. Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, A.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78: 1992–1998.

    Article  CAS  PubMed  Google Scholar 

  45. Guimarães, M.R., L.S. Coimbra, S.G. de Aquino, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2011. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo: Curcumin inhibits periodontal disease in vivo. Journal of Periodontal Research 46: 269–279.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guimaraes, M.R., S.G. de Aquino, L.S. Coimbra, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2012. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immunity 18: 155–163.

    Article  CAS  PubMed  Google Scholar 

  47. Preshaw, P.M. 2013. Diabetes and periodontitis: what’s it all about. Pract. Diabetes 30: 9–10.

    Article  Google Scholar 

  48. Velea, O.A., C. Kralev, D. Onisei, D. Onisei, L.M. Nica, and I.P. Velea. 2013. Diabetes mellitus and periodontal disease—a two-way road: Current concepts and future considerations (literature review). Eur. Sci. J. 9: 61–79.

    Google Scholar 

  49. Meenawat, A., K. Punn, V. Srivastava, A. Meenawat, R. Dolsa, and V. Govila. 2013. Periodontal disease and type I diabetes mellitus: Associations with glycemic control and complications. J Indian Soc Periodontol 17: 597–600.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Claudino, M., G. Gennaro, T.M. Cestari, C.T. Spadella, G.P. Garlet, and G.F. Assis. 2012. Spontaneous periodontitis development in diabetic rats involves an unrestricted expression of inflammatory cytokines and tissue destructive factors in the absence of major changes in commensal oral microbiota. Experimental Diabetes Research 2012: 1–10.

    Article  Google Scholar 

  51. Liu, R., H.S. Bal, T. Desta, N. Krothapalli, M. Alyassi, Q. Luan, et al. 2006. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. Journal of Dental Research 85: 510–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang, K.M., N.S. Ramamurthy, T.F. McNamara, R.T. Evans, B. Klausen, and L.M. Golub. 1994. Tetracycline inhibit Porphyromonas gingivalis-induced alveolar bone loss in rats by a non-antimicrobial mechanism. J Periodont Res 29: 242–249.

    Article  CAS  PubMed  Google Scholar 

  53. Bildt, M.M., M. Bloemen, A.M. Kuijpers-Jagtman, and J.W. Von den Hoff. 2008. Collagenolytic fragments and active gelatinase complexes in periodontitis. Journal of Periodontology 79: 1704–1711.

    Article  CAS  PubMed  Google Scholar 

  54. Patil, C., C. Rossa, and K.L. Kirkwood. 2006. Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts. Oral Microbiology and Immunology 21: 392–398.

    Article  CAS  PubMed  Google Scholar 

  55. Plummer, S.M., K.A. Holloway, M.M. Manson, R.J. Munks, A. Kaptein, S. Farrow, et al. 1999. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18: 6013–6020.

    Article  CAS  PubMed  Google Scholar 

  56. Gaddipati, J.P., S.V. Sundar, J. Calemine, P. Seth, G.S. Sidhu, and R.K. Maheshwari. 2003. Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19: 150–156.

    Article  CAS  PubMed  Google Scholar 

  57. Goel, A., A.B. Kunnumakkara, and B.B. Aggarwal. 2008. Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology 75: 787–809.

    Article  CAS  PubMed  Google Scholar 

  58. Woo, M.-S., S.-H. Jung, S.-Y. Kim, J.-W. Hyun, K.-H. Ko, W.-K. Kim, et al. 2005. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochemical and Biophysical Research Communications 335: 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  59. Guimarães, M.R., F.R.M. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2013. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58: 1309–1317.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Banerjee, M., L.M. Tripathi, V.M.L. Srivastava, A. Puri, and R. Shukla. 2003. Modulationof inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacology and Immunotoxicology 25: 213–224.

    Article  CAS  PubMed  Google Scholar 

  61. Fu, Y., S. Zheng, J. Lin, J. Ryerse, and A. Chen. 2007. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology 73: 399–409.

    Article  PubMed  Google Scholar 

  62. Geivelis, M., W. Turner, E. Pederson, and B. Lamberts. 1993. Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease. Journal of Periodontology 64: 980–983.

    Article  CAS  PubMed  Google Scholar 

  63. Offenbacher, S., P. Heasman, and G. Collins. 1993. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. Journal of Periodontology 64: 432–444.

    CAS  PubMed  Google Scholar 

  64. Gamonal, J., A. Acevedo, A. Bascones, O. Jorge, and A. Silva. 2000. Levels of Interleukin-1β, -8, and -10 and RANTES in Gingival Crevicular Fluid and Cell Populations in Adult Periodontitis Patients and the Effect of Periodontal Treatment. Journal of Periodontology 71: 1535–1545.

    Article  CAS  PubMed  Google Scholar 

  65. Ejeil, A., F. Gaultier, S. Igondjo-Tchen, K. Senni, B. Pellat, G. Godeau, et al. 2003. Are cytokines linked to collagen breakdown during periodontal disease progression? Journal of Periodontology 74: 196–201.

    Article  CAS  PubMed  Google Scholar 

  66. Stashenko, P., J. Jandinski, P. Fujiyoshi, J. Ryna, and S. Socransky. 1991. Tissue levels of bone resorptive cytokines in periodontal disease. Journal of Periodontology 62: 504–509.

    Article  CAS  PubMed  Google Scholar 

  67. Gorska, R., H. Gregorek, J. Kowalski, A. Laskus-Perendyk, M. Syczewska, et al. 2003. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. Journal of Clinical Periodontology 30: 1046–1052.

    Article  CAS  PubMed  Google Scholar 

  68. DiDonato, J., M. Hayakawa, D. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkB kinase that activates the transcription factor NF-κB. Nature 388: 548–554.

    Article  CAS  PubMed  Google Scholar 

  69. Mercurio, F. 1997. IKK-1 and IKK-2: Cytokine-activated IB kinases essential for NF-κB activation. Science 278: 860–866.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J.-H., Z.-S. Shangguan, C. Chen, H.-J. Zhang, and Y. Lin. 2016. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway. Drug Design, Development and Therapy 10: 1829–1835.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Robbins, J., B. Thomas, L. Tan, B. Choy, J. Arbiser, F. Berenbaum, et al. 2000. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β. Arthritis and Rheumatism 43: 2189–2201.

    Article  CAS  PubMed  Google Scholar 

  72. Largo, R., M.A. Alvarez-Soria, I. Díez-Ortego, E. Calvo, O. Sánchez-Pernaute, J. Egido, et al. 2003. Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage 11: 290–298.

    Article  CAS  PubMed  Google Scholar 

  73. Page, R. 1998. The pathobiology of periodontal diseases may affect systemic diseases: Inversion of a paradigm. Annals of Periodontology 3: 108–120.

    Article  CAS  PubMed  Google Scholar 

  74. Gu, Y., H-M. Lee, N. Napolitano, M. Clemens, Y. Zhang, T. Sorsa, et al. 2013. 4-Methoxycarbonyl Curcumin: A Unique Inhibitor of Both Inflammatory Mediators and Periodontal Inflammation. Mediators of Inflammation 2013: 1–10.

    Article  Google Scholar 

  75. Geerlings, S.E., and A.I. Hoepelman. 1999. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology and Medical Microbiology 26: 259–265.

    Article  CAS  PubMed  Google Scholar 

  76. Arakawa, T. 1995. Transcriptional Roles of Nuclear Factor kappaB and Nuclear Factor-Interleukin-6 in the Tumor Necrosis Factor alpha-Dependent Induction of Cyclooxygenase-2 in MC3T3-E1 Cells. The Journal of Biological Chemistry 270: 31315–31320.

    Article  PubMed  Google Scholar 

  77. Esteve, P.O., E. Chicoine, O. Robledo, F. Aoudjit, A. Descoteaux, E.F. Potworowski, et al. 2002. Protein Kinase C- Regulates Transcription of the Matrix Metalloproteinase-9 Gene Induced by IL-1 and TNF-α in Glioma Cells via NF-κB. The Journal of Biological Chemistry 277: 35150–35155.

    Article  CAS  PubMed  Google Scholar 

  78. Assuma, R., T. Oates, D. Cochran, S. Amar, and D.T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. Journal of Immunology 160: 403–409.

    CAS  Google Scholar 

  79. Graves, D., A. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran. 1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. Journal of Periodontology 69: 1419–1425.

    Article  CAS  PubMed  Google Scholar 

  80. Wei, S., H. Kitaura, P. Zhou, F.P. Ross, and S.L. Teitelbaum. 2005. IL-1 mediates TNF-induced osteoclastogenesis. The Journal of Clinical Investigation 115: 282–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Delima, A.J., T. Oates, R. Assuma, Z. Schwartz, D. Cochran, S. Amar, et al. 2001. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28: 233–240.

    Article  CAS  PubMed  Google Scholar 

  82. Sylvester, J., A. Liacini, W. Li, F. Dehnade, and M. Zafarullah. 2001. Tripterygium wilfordii Hook F extract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-κB activities. Molecular Pharmacology 59: 1196–1205.

    CAS  PubMed  Google Scholar 

  83. Mengshol, J., M. Vincenti, Coon, A. Barchowsky, and C. Brimckerhoff. 2000. Interleukin-1 Induction of Collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-JUN N-terminal kinase, and nuclear factor κB differential regulation of collagenase 1 and collagenase 3. Arthritis and Rheumatism 43: 801–811.

    Article  CAS  PubMed  Google Scholar 

  84. Sakai, T., F. Kambe, H. Mitsuyama, N. Ishiguro, K. Kurokouchi, M. Takigawa, et al. 2001. Tumor necrosis factor α induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-κB: Abrogation of the tumor necrosis factor a effect by proteasome inhibitors. Journal of Bone and Mineral Research 16: 1272–1280.

    Article  CAS  PubMed  Google Scholar 

  85. Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262.

    Article  CAS  PubMed  Google Scholar 

  86. Singh, R., S. Ahmed, N. Islam, V.M. Goldberg, and T.M. Haqqi. 2002. Epigallocatechin-3-gallate inhibits interleukin-1?-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: Suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis and Rheumatism 46: 2079–2086.

    Article  CAS  PubMed  Google Scholar 

  87. Schmitz, J., D. Dean, Z. Schwartz, D. Cochran, G. Grant, R. Klebe, et al. 1996. Chondrocyte cultures express matrix metalloproteinase mRNA and immunoreactive protein; stromelysin-1 and 72 kDa gelatinase are localized in extracellular matrix vesicles. Journal of Cellular Biochemistry 61: 375–391.

    Article  CAS  PubMed  Google Scholar 

  88. Visse, R., and H. Nagase. 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research 92: 827–839.

    Article  CAS  PubMed  Google Scholar 

  89. Shakibaei, M., T. John, G. Schulze-Tanzil, I. Lehmann, and A. Mobasheri. 2007. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochemical Pharmacology 73: 1434–1445.

    Article  CAS  PubMed  Google Scholar 

  90. Hudson, M.P., P.W. Armstrong, W. Ruzyllo, J. Brum, L. Cusmano, P. Krzeski, et al. 2006. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction. Journal of the American College of Cardiology 48: 15–20.

    Article  CAS  PubMed  Google Scholar 

  91. Krzeski, P., C. Buckland-Wright, G. Bálint, G.A. Cline, K. Stoner, R. Lyon, et al. 2007. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Research & Therapy 9: 1.

    Article  Google Scholar 

  92. Bissett, D. 2005. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. Journal of Clinical Oncology 23: 842–849.

    Article  CAS  PubMed  Google Scholar 

  93. Koide, N., A. Kaneda, T. Yokochi, and K. Umezawa. 2015. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide. International Immunopharmacology 25: 162–168.

    Article  CAS  PubMed  Google Scholar 

  94. Abu-Amer, Y. 2013. NF-κB signaling and bone resorption. Osteoporosis International 24: 2377–2386.

    Article  CAS  PubMed  Google Scholar 

  95. Jimi, E., K. Aoki, H. Saito, F. D’Acquisto, M.J. May, I. Nakamura, et al. 2004. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nature Medicine 10: 617–624.

    Article  CAS  PubMed  Google Scholar 

  96. Yang, S., X. Li, L. Cheng, H. Wu, C. Zhang, and K. Li. 2015. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo. Biochemical and Biophysical Research Communications 466: 615–621.

    Article  CAS  PubMed  Google Scholar 

  97. Lee, J., and P. Young. 1996. Role of CSBP/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. Journal of Leukocyte Biology 59: 152–157.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant no. A43273 from the New York State Office of Science, Technology, and Academic Research (NYSTAR), through NYSTAR’s Center of Advanced Technology, and a Grant (A37298) from the Research Foundation, Stony Brook University, and Sao Paulo State Research Foundation (FAPESP) Grant nos. 2009/54080-0, 2010/20091-2, 2010/19660-2, and 2012/15826-9, and from the Ministry of Higher Education and Scientific Research in Libya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muna S. Elburki.

Ethics declarations

The study protocol was previously approved by the Institution’s Committees (Araraquara-UNESP, SP, Brazil, and Stony Brook University, NY, USA) for Experimental Animal Use.

Conflict of Interests

Lorne M. Golub is listed as an inventor on several related patents, and these have been fully assigned to his institution, Stony Brook University, State University of New York (SUNY). Francis Johnson is also listed as an inventor on several related patents which have been fully assigned to Stony Brook University and to Chem-Master Int., Inc., on a shared basis. He declares that he has no conflict of interests, financial or otherwise, with regard to the publication of this paper. All other authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elburki, M.S., Rossa, C., Guimarães-Stabili, M.R. et al. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis. Inflammation 40, 1436–1449 (2017). https://doi.org/10.1007/s10753-017-0587-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0587-4

Key Words

Navigation