Skip to main content

Advertisement

Log in

Activation of Neutrophils via IP3 Pathway Following Exposure to Demodex-Associated Bacterial Proteins

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rosacea is a chronic inflammatory condition that predominantly affects the skin of the face. Sera from rosacea patients display elevated reactivity to proteins from a bacterium (Bacillus oleronius) originally isolated from a Demodex mite from a rosacea patient suggesting a possible role for bacteria in the induction and persistence of this condition. This work investigated the ability of B. oleronius proteins to activate neutrophils and demonstrated activation via the IP3 pathway. Activated neutrophils displayed increased levels of IP1 production, F-actin formation, chemotaxis, and production of the pro-inflammatory cytokines IL-1β and IL-6 following stimulation by pure and crude B. oleronius protein preparations (2 μg/ml), respectively. In addition, neutrophils exposed to pure and crude B. oleronius proteins (2 μg/ml) demonstrated increased release of internally stored calcium (Ca2+), a hallmark of the IP3 pathway of neutrophil activation. Neutrophils play a significant role in the inflammation associated with rosacea, and this work demonstrates how B. oleronius proteins can induce neutrophil recruitment and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Powell, F.C. 2005. Rosacea. New England Journal of Medicine 352: 793–803.

    Article  CAS  PubMed  Google Scholar 

  2. Holmes, A.D. 2013. Potential role of microorganisms in the pathogenesis of rosacea. Journal of American Academy of Dermatology 69: 1025–32.

    Article  Google Scholar 

  3. Jarmuda, S., N. O'Reilly, R. Zaba, O. Jakubowicz, A. Szkaradkiewicz, and K. Kavanagh. 2012. The potential role of Demodex folliculorum mites and bacteria in the induction of rosacea. Journal of Medical Microbiology 61: 1504–10.

    Article  PubMed  Google Scholar 

  4. Wilkin, J., M. Dahl, M. Detmar, L. Drake, A. Feinstein, R. Odom, and F. Powell. 2002. Standard classification of rosacea: Report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. Journal of American Academy of Dermatology 46: 584–87.

    Article  Google Scholar 

  5. Crawford, G.H., M.T. Pelle, and W.D. James. 2004. Rosacea: I. Etiology, pathogenesis, and subtype classification. Journal of American Academy of Dermatology 51: 327–41.

    Article  Google Scholar 

  6. Gupta, A.K., and M.M. Chaudhry. 2005. Rosacea and its management: an overview. Journal of the European Academy of Dermatology and Venereology 19: 273–85.

    Article  CAS  PubMed  Google Scholar 

  7. Pelle, M.T., G.H. Crawford, and W.D. James. 2004. Rosacea: II. Therapy. Journal of American Academy of Dermatology 51: 499–512.

    Article  Google Scholar 

  8. Yamasaki, K., and R.L. Gallo. 2009. The molecular pathology of rosacea. Journal of Dermatological Science 55: 77–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Akamatsu, H., M. Oguchi, S. Nishijima, Y. Asada, M. Takashi, T. Ushijima, and Y. Niwa. 1990. The inhibition of free radical generation by human neutrophils through the synergistic effect of metronidazole with palmitoleic acid: a possible mechanism of metronidazole in rosacea and acne. Archives of Dermatological Research 282: 449–54.

    Article  CAS  PubMed  Google Scholar 

  10. Miyashi, Y., A. Yoshioka, S. Imamura, and Y. Niwa. 1986. Effect of antibiotics on the generation of reactive oxygen species. Journal of Investigative Dermatology 86: 449–53.

    Article  Google Scholar 

  11. Yoshioka, A., Y. Miyachi, S. Imamura, and Y. Niwa. 1986. Anti-oxidant effects of retinoids on inflammatory skin diseases. Archives of Dermatological Research 278: 177–83.

    Article  CAS  PubMed  Google Scholar 

  12. Starkey, P.M., A.J. Barrett, and M.C. Burleigh. 1977. The degradation of articular collagen by neutrophil proteinases. Biochimica et Biophysica Acta 483: 386–97.

    Article  CAS  PubMed  Google Scholar 

  13. Berton, A., G. Godeau, H. Emonard, K. Baba, P. Bellon, W. Hornebeck, and G. Bellon. 2000. Analysis of the ex vivo specificity of human gelatinases A and B towards skin collagen and elastic fibers by computerized morphometry. Matrix Biology 19: 139–148.

    Article  CAS  PubMed  Google Scholar 

  14. Devaney, J.M., C.M. Greene, C.C. Taggart, T.P. Carroll, S.J. O’Neill, and N.G. McElvaney. 2003. Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Letters 544: 129–132.

    Article  CAS  PubMed  Google Scholar 

  15. Kuwahara, I., E.P. Lillehoj, W. Lu, I.S. Singh, Y. Isohama, T. Miyata, and K.C. Kim. 2006. Neutrophil elastase induces IL-8 gene transcription and protein release through p38/NF-κB activation via EGFR trans-activation in a lung epithelial cell line. American Journal of Physiology. Lung Cellular and Molecular Physiology 291: 407–416.

    Article  Google Scholar 

  16. Tintinger, G., H.C. Steel, and R. Anderson. 2005. Taming the neutrophil: calcium clearance and influx mechanisms as novel targets for pharmacological control. Clinical Experimental Immunology 141: 191–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bokoch, G.M. 1995. Chemoattractant signaling and leukocyte activation. Blood 86: 1649–1660.

    CAS  PubMed  Google Scholar 

  18. Binah, O., M. Shilkrut, G. Yaniv, and S. Larisch. 2004. The Fas receptor 1,4,5-IP3 cascade: a potential target for treating heart failure and arrhythmias. Annals of the New York Academy of Science 1015: 338–350.

    Article  CAS  Google Scholar 

  19. Wacker, M.J., L.M. Kosloski, W.J.R. Gilbert, C.D. Touchberry, D.S. Moore, J.K. Kelly, M. Brotto, and J.A. Orr. 2009. Inhibition of thromboxane A2-induced arrhythmias and intracellular calcium changes in cardiac myocytes by blockade of the inositol trisphosphate pathway. Journal of Pharmacological and Experimental Therapeutics 331: 917–924.

    Article  CAS  Google Scholar 

  20. Vance, J. 1986. Demodicidosis – Do Demodex mites cause Disease? Current Concepts in Skin Disorder 10–18.

  21. Bonner, E., P. Eustace, and F.C. Powell. 1993. The Demodex mite population in Rosacea. Journal of American Academy of Dermatology 28: 443–448.

    Article  Google Scholar 

  22. Erbağci, Z., and O. Ozgöztaşi. 1998. The significance of Demodex folliculorum density in rosacea. International Journal of Dermatology 37: 421–425.

    Article  PubMed  Google Scholar 

  23. Ni Raghallaigh, S., K. Bender, N. Lacey, L. Brennan, and F.C. Powell. 2012. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. British Journal of Dermatology 166: 279–287.

    Article  CAS  PubMed  Google Scholar 

  24. Dahl, M.V., A.J. Ross, and P.M. Schlievert. 2004. Temperature regulates bacterial protein production: possible role in rosacea. Journal of American Academy of Dermatology 50: 266–272.

    Article  Google Scholar 

  25. Lacey, N., S. Delaney, K. Kavanagh, and F.C. Powell. 2007. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. British Journal of Dermatology 157: 474–481.

    Article  CAS  PubMed  Google Scholar 

  26. Whitfeld, M., N. Gunasingam, L. Joo Leow, K. Shirato, and V. Preda. 2011. Staphylococcus epidermidis: a possible role in the pustules of rosacea. Journal of American Academy of Dermatology 64: 49–52.

    Article  Google Scholar 

  27. Kuhnigk, T., E.M. Borst, A. Breunig, H. König, M.D. Collins, R.A. Hutson, and P. Kämpfer. 1995. Bacillus oleronius sp. nov., a member of the hind-gut flora of the termite Reticulitermes santonensis (Feytaud). Canadian Journal of Microbiology 41: 699–706.

    Article  CAS  PubMed  Google Scholar 

  28. Szkaradkiewicz, A., I. Chudzicka-Strugała, T.M. Karpiński, O. Goślińska-Pawłowska, T. Tułecka, W. Chudzicki, A.K. Szkaradkiewicz, and R. Zaba. 2012. Bacillus oleronius and Demodex mite infestation in patients with chronic blepharitis. Clinical Microbiology and Infection 18: 1020–1025.

    Article  CAS  PubMed  Google Scholar 

  29. Li, J., N. O'Reilly, H. Sheha, R. Katz, V.K. Raju, K. Kavanagh, and S.C. Tseng. 2010. Correlation between ocular Demodex infestation and serum immunoreactivity to Bacillus microbial proteins in patients with facial rosacea. Ophthalmology 117: 870–877.

    Article  PubMed Central  PubMed  Google Scholar 

  30. O’Reilly, N., N. Menezes, and K. Kavanagh. 2012. Positive correlation between serum immuno-reactivity to Demodex-associated Bacillus proteins and erythematotelangiectic rosacea. British Journal of Dermatology 167: 1032–1036.

    Article  PubMed  Google Scholar 

  31. Jarmuda, S., F. McMahon, R. Zaba, N. O’Reilly, O. Jakubowicz, A. Holland, A. Szkaradkiewicz, and K. Kavanagh. 2014. Correlation between serum reactivity to Demodex-associated Bacillus oleronius proteins, and altered sebum levels and Demodex populations in erythematotelangiectatic rosacea patients. Journal of Medical Microbiology 63: 258–262.

    Article  PubMed  Google Scholar 

  32. O’Reilly, N., C. Gallagher, K.R. Katikireddy, M. Clynes, F. O’Sullivan, and K. Kavanagh. 2012. Demodex-associated Bacillus proteins induce an aberrant wound healing response in a corneal epithelial cell line (hTCEpi): possible implications for corneal ulcer formation in ocular rosacea. Investigative Ophthalmology and Visual Science 53: 3250–3259.

    Article  PubMed  Google Scholar 

  33. McMahon, F.W., C. Gallagher, N. O’Reilly, M. Clynes, F. O’Sullivan, and K. Kavanagh. 2014. Exposure of a corneal epithelial cell line (hTCEpi) to Demodex-associated Bacillus proteins results in an inflammatory response. Investigative Ophthalmology and Visual Science 55: 7019–7028.

    Article  CAS  PubMed  Google Scholar 

  34. O’Reilly, N., D. Bergin, E.P. Reeves, N.G. McElvaney, and K. Kavanagh. 2012. Demodex-associated bacterial proteins induce neutrophil activation. British Journal of Dermatology 166: 753–760.

    Article  PubMed  Google Scholar 

  35. Reeves, E.P., H. Lu, H.L. Jacobs, C.G. Messina, S. Bolsover, G. Gabella, E.O. Potma, A. Warley, J. Roes, and A.W. Segal. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291–297.

    Article  CAS  PubMed  Google Scholar 

  36. Eichner, R.D., M. Al Salami, P.R. Wood, and A. Müllbacher. 1986. The effect of gliotoxin upon macrophage function. International Journal of Immunopharmacology 8: 789–797.

    Article  CAS  PubMed  Google Scholar 

  37. Jayachandran, R., V. Sundaramurthy, B. Combaluzier, P. Mueller, H. Korf, K. Huygen, T. Miyazaki, I. Albrecht, J. Massner, and J. Pieters. 2007. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130: 37–50.

    Article  CAS  PubMed  Google Scholar 

  38. Rossi, F. 1986. The O2-forming NADPH oxidase of the phagocytes: Nature, mechanisms of activation and function. Biochimica et Biophysica Acta 853: 65–89.

    Article  CAS  PubMed  Google Scholar 

  39. Lew, P.D. 1990. Receptors and intracellular signaling in human neutrophils. The American Review of Respiratory Disease 141: S127–131.

    Article  CAS  PubMed  Google Scholar 

  40. Billah, M.M. 1993. Phospholipase D and cell signaling. Current Opinions in Immunology 5: 114–123.

    Article  CAS  Google Scholar 

  41. Thelen, M., and U. Wirthmueller. 1994. Phospholipases and protein kinases during phagocyte activation. Current Opinions in Immunology 6: 106–112.

    Article  CAS  Google Scholar 

  42. Pollard, T.D., and J.A. Cooper. 2009. Actin, a central player in cell shape and movement. Science 326: 1208–1212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Brink, N., M. Szamel, A.R. Young, K.P. Wittern, and J. Bergemann. 2000. Comparative quantification of IL-1beta, IL-10, IL-10r, TNFalpha and IL-7 mRNA levels in UV-irradiated human skin in vivo. Inflammation Research 49: 290–296.

    Article  CAS  PubMed  Google Scholar 

  44. Grossman, R.M., J. Krueger, D. Yourish, A. Granelli-Piperno, D.P. Murphy, L.T. May, T.S. Kupper, P.B. Sehgal, and A.B. Gottlieb. 1989. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proceedings of the National Academy of Science of the USA 86: 6367–6371.

    Article  CAS  Google Scholar 

  45. Aylesworth, R., and J.C. Vance. 1982. Demodex folliculorum and Demodex brevis in cutaneous biopsies. Journal of American Academy of Dermatology 7: 583–589.

    Article  CAS  Google Scholar 

  46. Akilov, O.E., and K.Y. Mumcuoglu. 2003. Association between human demodicosis and HLA class I. Clinical and Experimental Dermatology 28: 70–73.

    Article  CAS  PubMed  Google Scholar 

  47. Casas, C., C. Paul, M. Lahfa, B. Livideanu, O. Lejeune, S. Alvarez-Georges, C. Saint-Martory, A. Degouy, V. Mengeaud, H. Ginisty, E. Durbise, A.M. Schmitt, and D. Redoulès. 2012. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Experimental Dermatology 21: 906–910.

    Article  CAS  PubMed  Google Scholar 

  48. Grice, E.A., and J.A. Segre. 2011. The skin microbiome. Nature Reviews Microbiology 9: 244–253.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Leyden, J.J., K.J. McGinley, O.H. Mills, and A.M. Kligman. 1975. Propionibacterium levels in patients with and without acne vulgaris. Journal of Investigative Dermatology 65: 382–384.

    Article  CAS  PubMed  Google Scholar 

  50. Somerville, D.A. 1969. The normal flora of the skin in different age groups. British Journal of Dermatology 81: 248–258.

    Article  CAS  PubMed  Google Scholar 

  51. Murillo, N., J. Aubert, and D. Raoult. 2014. Microbiota of Demodex mites from rosacea patients and controls. Microbial Pathogenesis 71–72: 37–40.

    Article  PubMed  Google Scholar 

  52. Putney, J.W. 2007. Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 42: 103–110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Berridge, M.J. 1995. Capacitative calcium entry. Biochemistry Journal 312: 1–11.

    Article  CAS  Google Scholar 

  54. Taylor, C.W., P.C. da Fonseca, and E.P. Morris. 2004. IP3 receptors: the search for structure. Trends in Biochemical Science 29: 210–219.

    Article  CAS  Google Scholar 

  55. Lawrence, T. 2009. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology 1(6): a001651.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Mastrofrancesco, A., M. Ottaviani, N. Aspite, G. Cardinali, E. Izzo, K. Graupe, C.C. Zouboulis, E. Camera, and M. Picardo. 2010. Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARγ activation. Experimental Dermatology 19: 813–820.

    Article  CAS  PubMed  Google Scholar 

  57. Eishingdrelo, H., and S. Kongsamut. 2013. Minireview: targeting GPCR activated ERK pathways for drug discovery. Current Chemical Genomics and Translational Medicine 7: 9–15.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Brown, K.M., and D.K. Tracy. 2013. Lithium: the pharmacodynamic actions of the amazing ion. Therapeutic Advances in Psychopharmacology 3: 163–176.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kliem, C., A. Merling, M. Giaisi, R. Köhler, P.H. Krammer, and M. Li-Weber. 2012. Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation. Journal of Biological Chemistry 287: 10200–10209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Galeotti, N., A. Bartolini, M. Calvani, R. Nicolai, and C. Ghelardini. 2004. Acetyl-L-carnitine requires phospholipase C-IP3 pathway activation to induce antinociception. Neuropharmacology 47: 286–294.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

F. McM is funded by the Programme in BioAnalysis and Therapeutics (BioAT) by the Higher Education Authority of Ireland through PRTLI V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kavanagh.

Ethics declarations

Conflict of interest

S. Paulie is employed by, and part-owner of, Mabtech AB. C. Smedman is employed by Mabtech AB. The other authors (F.McMahon, N. Banville, D. Bergin, E. Reeves, K. Kavanagh) have no conflicts of interest to declare.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(DOC 432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMahon, F., Banville, N., Bergin, D.A. et al. Activation of Neutrophils via IP3 Pathway Following Exposure to Demodex-Associated Bacterial Proteins. Inflammation 39, 425–433 (2016). https://doi.org/10.1007/s10753-015-0264-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0264-4

KEY WORDS

Navigation