Skip to main content

Advertisement

Log in

Elevated Endomyocardial Biopsy Macrophage-Related Markers in Intractable Myocardial Diseases

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Tissue macrophages can be activated by endogenous danger signals released from cells that are stressed or injured, leading to infiltration of inflammatory macrophages and neutrophils. We postulated that macrophage-related markers might be closely associated with the existence of endogenous danger signals, reflecting ongoing tissue injury in the absence of foreign substances. This study was designed to assess the ability of macrophage-related markers in endomyocardial biopsies to predict ongoing cardiac injury in non-inflammatory myocardial diseases. We examined levels of macrophage-related markers (CD68, CD163, CD45) in endomyocardial biopsies from patients (n = 86) with various myocardial diseases by quantitative reverse transcription-polymerase chain reaction (n = 78) and immunohistochemistry (n = 56). Thirty-three patients without inflammatory cardiac disease such as myocarditis and sarcoidosis were classified as “improved” or “non-improved” defined as a 10 % increase in left ventricular ejection fraction by echocardiograph and a value greater than 30 % at the time of follow-up. All macrophage-related (MacR) markers levels were not higher in non-improved dilated cardiomyopathy (DCM) patients than improved patients. However, patients with cardiac amyloidosis, cardiac Fabry disease, mitochondrial cardiomyopathy, and biventricular arrhythmogenic right ventricular cardiomyopathy (ARVC), which were categorized as “non-improvement diseases,” had elevated macrophage-related markers compared to improved patients. Macrophage-related markers levels were increased in endomyocardial biopsy samples of patients with intractable myocardial diseases such as amyloidosis, mitochondrial disease, Fabry disease, and biventricular ARVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nature Immunology 11: 373–384.

    Article  CAS  PubMed  Google Scholar 

  2. Kono, H., and K.L. Rock. 2008. How dying cells alert the immune system to danger. Nature Reviews Immunology 8: 279–289.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Matzinger, P. 2002. The danger model: a renewed sense of self. Science 296: 301–305.

    Article  CAS  PubMed  Google Scholar 

  4. Shi, Y., J.E. Evans, and K.L. Rock. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–521.

    Article  CAS  PubMed  Google Scholar 

  5. Epelman, S., P.P. Liu, and D.L. Mann. 2015. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nature Reviews Immunology 15: 117–129.

    Article  CAS  PubMed  Google Scholar 

  6. Pinto, A.R., R. Paolicelli, E. Salimova, et al. 2012. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PloS One 7: e36814.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Smith, S.C., and P.M. Allen. 1992. Expression of myosin-class ii major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. Proceedings of the National Academy of Sciences of the United States of America 89: 9131–9135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hao, K., H. Hanawa, L. Ding, et al. 2011. Free heme is a danger signal inducing expression of proinflammatory proteins in cultured cells derived from normal rat hearts. Molecular Immunology 48: 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  9. Savvatis, K., H.P. Schultheiss, and C. Tschope. 2015. Endomyocardial biopsy and ultrastructural changes in dilated cardiomyopathy: taking a “deeper” look into patients’ prognosis. European Heart Journal 36: 708–710.

    Article  PubMed  Google Scholar 

  10. Saito, T., K. Asai, S. Sato, et al. 2015. Ultrastructural features of cardiomyocytes in dilated cardiomyopathy with initially decompensated heart failure as a predictor of prognosis. European Heart Journal 36: 724–732.

    Article  PubMed  Google Scholar 

  11. Komohara, Y., J. Hirahara, T. Horikawa, et al. 2006. Am-3k, an anti-macrophage antibody, recognizes cd163, a molecule associated with an anti-inflammatory macrophage phenotype. The Journal of Histochemistry and Cytochemistry 54: 763–771.

    Article  CAS  PubMed  Google Scholar 

  12. O’Mahony, C., and P. Elliott. 2010. Anderson-fabry disease and the heart. Progress in Cardiovascular Diseases 52: 326–335.

    Article  PubMed  Google Scholar 

  13. Felker, G.M., R.E. Thompson, J.M. Hare, et al. 2000. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. The New England Journal of Medicine 342: 1077–1084.

    Article  CAS  PubMed  Google Scholar 

  14. Momiyama, Y., Y. Atsumi, F. Ohsuzu, et al. 1999. Rapid progression of cardiomyopathy in mitochondrial diabetes. Japanese Circulation Journal 63: 130–132.

    Article  CAS  PubMed  Google Scholar 

  15. Lemola, K., C. Brunckhorst, U. Helfenstein, et al. 2005. Predictors of adverse outcome in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy: long term experience of a tertiary care centre. Heart 91: 1167–1172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Plante-Bordeneuve, V., and G. Said. 2011. Familial amyloid polyneuropathy. Lancet Neurology 10: 1086–1097.

    Article  CAS  PubMed  Google Scholar 

  17. Gustot, A., V. Raussens, M. Dehousse, et al. 2013. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-beta sheet structure. Cellular and Molecular Life Sciences 70: 2999–3012.

    Article  CAS  PubMed  Google Scholar 

  18. Wenceslau, C.F., C.G. McCarthy, T. Szasz, et al. 2014. Mitochondrial damage-associated molecular patterns and vascular function. European Heart Journal 35: 1172–1177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mancuso, M., D. Orsucci, E.C. Ienco, et al. 2013. An “inflammatory” mitochondrial myopathy. A case report. Neuromuscular Disorders 23: 907–910.

    Article  PubMed  Google Scholar 

  20. De Francesco, P.N., J.M. Mucci, R. Ceci, et al. 2013. Fabry disease peripheral blood immune cells release inflammatory cytokines: role of globotriaosylceramide. Molecular Genetics and Metabolism 109: 93–99.

    Article  PubMed  Google Scholar 

  21. Tuttolomondo, A., R. Pecoraro, I. Simonetta, et al. 2013. Anderson-fabry disease: a multiorgan disease. Current Pharmaceutical Design 19: 5974–5996.

    Article  CAS  PubMed  Google Scholar 

  22. Campian, M.E., H.J. Verberne, M. Hardziyenka, et al. 2010. Assessment of inflammation in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. European Journal of Nuclear Medicine and Molecular Imaging 37: 2079–2085.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Campuzano, O., M. Alcalde, A. Iglesias, et al. 2012. Arrhythmogenic right ventricular cardiomyopathy: severe structural alterations are associated with inflammation. Journal of Clinical Pathology 65: 1077–1083.

    Article  PubMed  Google Scholar 

  24. Ganz, M., and G. Szabo. 2013. Immune and inflammatory pathways in NASH. Hepatology International 7: 771–781.

    Article  PubMed Central  PubMed  Google Scholar 

  25. van Rijsingen, I.A., E. Arbustini, P.M. Elliott, et al. 2012. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. Journal of the American College of Cardiology 59: 493–500.

    Article  PubMed  Google Scholar 

  26. Taylor, M.R., P.R. Fain, G. Sinagra, et al. 2003. Natural history of dilated cardiomyopathy due to lamin a/c gene mutations. Journal of the American College of Cardiology 41: 771–780.

    Article  CAS  PubMed  Google Scholar 

  27. Mogensen, J., R.T. Murphy, T. Shaw, et al. 2004. Severe disease expression of cardiac troponin c and t mutations in patients with idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology 44: 2033–2040.

    Article  CAS  PubMed  Google Scholar 

  28. Komaki, H., Y.K. Hayashi, R. Tsuburaya, et al. 2011. Inflammatory changes in infantile-onset LMNA-associated myopathy. Neuromuscular Disorders 21: 563–568.

    Article  PubMed  Google Scholar 

  29. Mantovani, A., A. Sica, and M. Locati. 2005. Macrophage polarization comes of age. Immunity 23: 344–346.

    Article  CAS  PubMed  Google Scholar 

  30. Mantovani, A., A. Sica, S. Sozzani, et al. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology 25: 677–686.

    Article  CAS  PubMed  Google Scholar 

  31. Davies, L.C., S.J. Jenkins, J.E. Allen, et al. 2013. Tissue-resident macrophages. Nature Immunology 14: 986–995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bullers, S.J., S.C. Baker, E. Ingham, et al. 2014. The human tissue-biomaterial interface: a role for pparγ-dependent glucocorticoid receptor activation in regulating the cd163+ m2 macrophage phenotype. Tissue Engineering Part A 20: 2390–2401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Takebayashi, A., F. Kimura, Y. Kishi, et al. 2015. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. American Journal of Reproductive Immunology 73: 221–231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (no. 25461047). The cooperation of Dr. Y. Tanabe and Dr. T. Yoshida, Niigata Prefectural Shibata Hospital, for biopsy in the study is appreciated.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Hanawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Hanawa, H., Jiao, S. et al. Elevated Endomyocardial Biopsy Macrophage-Related Markers in Intractable Myocardial Diseases. Inflammation 38, 2288–2299 (2015). https://doi.org/10.1007/s10753-015-0214-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0214-1

KEY WORDS

Navigation