Skip to main content

Advertisement

Log in

Ox-LDL Upregulates IL-6 Expression by Enhancing NF-κB in an IGF2-Dependent Manner in THP-1 Macrophages

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Interleukin 6 (IL-6) is a pro-inflammatory cytokine that is well established as a vital factor in determining the risk of coronary heart disease and pathogenesis of atherosclerosis. Moreover, accumulating evidences have shown that oxidized low-density lipoprotein (ox-LDL) can promote IL-6 expression in macrophages. Nevertheless, the underlying mechanism of how ox-LDL upregulates IL-6 expression remains largely unexplained. We found that the expression of insulin-like growth factor 2 (IGF2), nuclear factor kappa B (NF-κB), and IL-6 was upregulated at both the messenger RNA (mRNA) and protein levels in a dose-dependent manner when treated with 0, 25, 50, or 100 μg/mL of ox-LDL for 48 h in THP-1 macrophages. Moreover, overexpression of IGF2 significantly upregulated NF-κB and IL-6 expressions in THP-1 macrophages. However, the upregulation of NF-κB and IL-6 expressions induced by ox-LDL were significantly abolished by IGF2 small interfering RNA (siRNA) in THP-1 macrophages. Further studies indicated the upregulation of IL-6 induced by ox-LDL could be abolished when treated with NF-κB siRNA in THP-1 macrophages. Ox-LDL might upregulate IL-6 in the cell and its secretion via enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chalmers, A.D., Cohen, A., Bursill, C.A., et al. 2015. Bifurcation and dynamics in a mathematical model of early atherosclerosis: how acute inflammation drives lesion development. J Math Biol.

  2. Sadat, U., F.A. Jaffer, M.A. van Zandvoort, et al. 2014. Inflammation and neovascularization intertwined in atherosclerosis: imaging of structural and molecular imaging targets. Circulation 130: 786–794.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Weinberg, E.O., and C.A. Genco. 2012. Directing TRAF-ic: cell-specific TRAF6 signaling in chronic inflammation and atherosclerosis. Circulation 126: 1678–1680.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Manduteanu, I., and M. Simionescu. 2012. Inflammation in atherosclerosis: a cause or a result of vascular disorders? Journal of Cellular and Molecular Medicine 16: 1978–1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Weber, C., and H. Noels. 2011. Atherosclerosis: current pathogenesis and therapeutic options. Nature Medicine 17: 1410–1422.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J.H., C.W. Tsai, C.P. Wang, et al. 2013. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation. Toxicology and Applied Pharmacology 272: 313–324.

    Article  CAS  PubMed  Google Scholar 

  7. Bobryshev, Y.V. 2006. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37: 208–222.

    Article  CAS  PubMed  Google Scholar 

  8. Lu, J., S. Mitra, X. Wang, et al. 2011. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxidants and Redox Signaling 15: 2301–2333.

    Article  CAS  PubMed  Google Scholar 

  9. Sukhanov, S., Y. Higashi, S.Y. Shai, et al. 2007. IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 2684–2690.

    Article  CAS  PubMed  Google Scholar 

  10. LeRoith, D., and C.T. Roberts Jr. 2003. The insulin-like growth factor system and cancer. Cancer Letters 195: 127–137.

    Article  CAS  PubMed  Google Scholar 

  11. Higashi, Y., S. Sukhanov, A. Anwar, et al. 2012. Aging, atherosclerosis, and IGF-1. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 67: 626–639.

    Article  PubMed  Google Scholar 

  12. Higashi, Y., S. Sukhanov, A. Anwar, et al. 2010. IGF-1, oxidative stress and atheroprotection. Trends in Endocrinology and Metabolism 21: 245–254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zaina, S., L. Pettersson, B. Ahren, et al. 2002. Insulin-like growth factor II plays a central role in atherosclerosis in a mouse model. The Journal of Biological Chemistry 277: 4505–4511.

    Article  CAS  PubMed  Google Scholar 

  14. Sun, Y., D. Chen, L. Cao, et al. 2013. MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovascular Research 100: 272–279.

    Article  CAS  PubMed  Google Scholar 

  15. Li, S.F., Y.W. Hu, J.Y. Zhao, et al. 2015. Ox-LDL upregulates CRP expression through the IGF2 pathway in THP-1 macrophages. Inflammation 38: 576–583.

    Article  PubMed  Google Scholar 

  16. Fontes, J.A., Rose, N.R., Cihakova, D. 2015. The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine.

  17. Interleukin-6 Receptor Mendelian Randomisation Analysis, C. 2012. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379: 1214–1224.

    Article  Google Scholar 

  18. Collaboration, I.R.G.C.E.R.F, N. Sarwar, A.S. Butterworth, et al. 2012. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379: 1205–1213.

    Article  Google Scholar 

  19. Bekkering, S., J. Quintin, L.A. Joosten, et al. 2014. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology 34: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  20. Kaplanski, G., V. Marin, F. Montero-Julian, et al. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in Immunology 24: 25–29.

    Article  CAS  PubMed  Google Scholar 

  21. Hurst, S.M., T.S. Wilkinson, R.M. McLoughlin, et al. 2001. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14: 705–714.

    Article  CAS  PubMed  Google Scholar 

  22. Toyras, A., J. Ollikainen, M. Taskinen, et al. 2003. Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro. European Journal of Pharmaceutical Sciences 19: 223–230.

    Article  CAS  PubMed  Google Scholar 

  23. Cao, Q., Y. Jiang, J. Shi, et al. 2015. Artemisinin inhibits the proliferation, migration, and inflammatory reaction induced by tumor necrosis factor-alpha in vascular smooth muscle cells through nuclear factor kappa B pathway. The Journal of Surgical Research 194: 667–678.

    Article  CAS  PubMed  Google Scholar 

  24. de Winther, M.P., E. Kanters, G. Kraal, et al. 2005. Nuclear factor kappaB signaling in atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 904–914.

    Article  PubMed  Google Scholar 

  25. Hayden, M.S., and S. Ghosh. 2012. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes and Development 26: 203–234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wu, Y., W. Zhang, W. Liu, et al. 2011. The double-faced metabolic and inflammatory effects of standard drug therapy in patients after percutaneous treatment with drug-eluting stent. Atherosclerosis 215: 170–175.

    Article  CAS  PubMed  Google Scholar 

  27. Han, C.Y., S.Y. Park, and Y.K. Pak. 2000. Role of endocytosis in the transactivation of nuclear factor-kappaB by oxidized low-density lipoprotein. The Biochemical Journal 350(Pt 3): 829–837.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li, D., T. Saldeen, F. Romeo, et al. 2000. Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB. Circulation 102: 1970–1976.

    Article  CAS  PubMed  Google Scholar 

  29. Hernandez-Presa, M., C. Bustos, M. Ortego, et al. 1997. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95: 1532–1541.

    Article  CAS  PubMed  Google Scholar 

  30. Maziere, C., and J.C. Maziere. 2009. Activation of transcription factors and gene expression by oxidized low-density lipoprotein. Free Radical Biology and Medicine 46: 127–137.

    Article  CAS  PubMed  Google Scholar 

  31. Hu, Y.W., J.Y. Yang, X. Ma, et al. 2014. A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. The Journal of Lipid Research 55: 681–697.

    Article  CAS  PubMed  Google Scholar 

  32. Lusis, A.J. 2000. Atherosclerosis. Nature 407: 233–241.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Scholz, H., W. Sandberg, J.K. Damas, et al. 2005. Enhanced plasma levels of LIGHT in unstable angina: possible pathogenic role in foam cell formation and thrombosis. Circulation 112: 2121–2129.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Q., A.Z. Sha Ma, C. Wang, et al. 2015. Nifedipine inhibits ox-LDL-induced lipid accumulation in human blood-derived macrophages. Biochemical and Biophysical Research Communications 457: 440–444.

    Article  CAS  PubMed  Google Scholar 

  35. Gomez-Hernandez, A., O. Escribano, L. Perdomo, et al. 2013. Implication of insulin receptor a isoform and IRA/IGF-IR hybrid receptors in the aortic vascular smooth muscle cell proliferation: role of TNF-alpha and IGF-II. Endocrinology 154: 2352–2364.

    Article  CAS  PubMed  Google Scholar 

  36. Sukhanov, S., P. Snarski, C. Vaughn, et al. 2015. Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase. Atherosclerosis 238: 313–320.

    Article  CAS  PubMed  Google Scholar 

  37. Andersson, P., T. Gustafsson, and H.J. Arnqvist. 1999. Insulin-like growth factor binding proteins-2 to -6 are expressed by human vascular smooth muscle cells. The Journal of Endocrinology 163: 281–288.

    Article  CAS  PubMed  Google Scholar 

  38. Paule, B., S. Terry, L. Kheuang, et al. 2007. The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World Journal of Urology 25: 477–489.

    Article  CAS  PubMed  Google Scholar 

  39. Keller, E.T., C. Chang, and W.B. Ershler. 1996. Inhibition of NFkappaB activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. The Journal of Biological Chemistry 271: 26267–26275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Sciences Foundation of China (grant numbers 81271905, 81301489, and 81472009).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zheng or Qian Wang.

Additional information

Yan-Chao Wang and Yan-Wei Hu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YC., Hu, YW., Sha, YH. et al. Ox-LDL Upregulates IL-6 Expression by Enhancing NF-κB in an IGF2-Dependent Manner in THP-1 Macrophages. Inflammation 38, 2116–2123 (2015). https://doi.org/10.1007/s10753-015-0194-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0194-1

KEY WORDS

Navigation