Skip to main content

Advertisement

Log in

The NF-κB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches?

  • Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

The nuclear factor of kappa beta (NF-κB) transcription factor regulates the transcription of numerous genes including that of interleukin 6 (IL-6). The IL-6 acts as an autocrine and paracrine growth factor of androgen-independent prostate cancer. An aberrant expression of the IL-6 gene and an increase in IL-6 expression are detected in bone metastatic and hormone-refractory prostate cancer. IL-6 has been suggested to have a crucial role in the resistance to chemotherapy or hormonal therapy involving apoptotic cell death. The NF-κB/IL-6 dependent pathways promote tumour-cell survival and in most situations protect cells against apoptotic stimuli. These data provide a rational framework for targeting NF-κB and IL-6 activity in novel biologically based therapies for aggressive and androgen independent prostate cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giri D, Ozen M, Ittmann M (2001) Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 159:2159–2165

    PubMed  CAS  Google Scholar 

  2. Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC (2003) Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res 9:370–376

    PubMed  CAS  Google Scholar 

  3. Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC (2000) Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42:239–242

    PubMed  CAS  Google Scholar 

  4. Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM (2001) Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology 58:1008–1015

    PubMed  CAS  Google Scholar 

  5. Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC (1999) Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 161:182–187

    PubMed  CAS  Google Scholar 

  6. Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP (1999) Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 41:127–133

    PubMed  CAS  Google Scholar 

  7. Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET (2001) Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 12:33–40

    PubMed  CAS  Google Scholar 

  8. Borsellino N, Belldegrun A, Bonavida B (1995) Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 55:4633–4639

    PubMed  CAS  Google Scholar 

  9. Ghosh S, May MJ, Kopp EB (1998) NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol 16:225–260

    CAS  Google Scholar 

  10. Barkett M, Gilmore TD (1999) Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18:6910–6924

    PubMed  CAS  Google Scholar 

  11. Beg AA, Baltimore D (1996) An essential role for NF-κB in preventing TNF-beta-induced cell death. Science 274:782–784

    PubMed  CAS  Google Scholar 

  12. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkB. Oncogene 18:3063–3070

    PubMed  CAS  Google Scholar 

  13. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. 1999. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5: 119–127

    PubMed  CAS  Google Scholar 

  14. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE (1997) Aberrant nuclear factor-kappa B/Rel expression and the pathogenesis of breast cancer. J Clin Invest 100:2952–2960

    PubMed  CAS  Google Scholar 

  15. Nakshatri HPB-N, Martin DA, Goulet RJ, Sledge GW (1997) Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639

    PubMed  CAS  Google Scholar 

  16. Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF (2000) Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89:2274–2281

    PubMed  CAS  Google Scholar 

  17. Ludwig L, Kessler H, Wagner M, Hoang-Vu C, Dralle H, Adler G, Bohm BO, Schmid RM (2001) Nuclear factor kappa B is constitutively active in C-cell carcinoma and required for RET-induced transformation. Cancer Res 61: 4526–4535

    PubMed  CAS  Google Scholar 

  18. Ryan KM, Ernst MK, Rice NR, Vousden KH (2004) Role of NF-κB in p53-mediated programmed cell death. Nature 404:892–897

    Google Scholar 

  19. Chan H, Bartos DP, Owen-Schaub LB (1999) Activation dependent transcriptional regulation of the human Fas promoter requires NF-B p50–p65 recruitment. Mol Cell Biol 19:2098–2108

    PubMed  CAS  Google Scholar 

  20. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19:2690–2698

    PubMed  CAS  Google Scholar 

  21. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappa B in cancer: From innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    PubMed  CAS  Google Scholar 

  22. Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246

    PubMed  CAS  Google Scholar 

  23. Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Stringer B (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res. 10:2466–2472

    PubMed  CAS  Google Scholar 

  24. Gasparian AV, Yao YJ, Kowalczyk D, Lyakh LA, Karseladze A, Slaga TJ, Budunova IV (2002) The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells. J Cell Sci 115(Pt 1):141–151

    PubMed  CAS  Google Scholar 

  25. Suh J, Payvandi F, Edelstein LC, Amenta PS, Zong WX, Ge´linas C, Rabson AB (2002) Mechanisms of constitutive NF-kappa B activation in human prostate cancer cells. Prostate 52:183–200

    PubMed  CAS  Google Scholar 

  26. Zhao Q, Lee FS (1999) Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factorkappaB through I kappa B kinase-alpha and I kappa B kinase-beta. J Biol Chem 274:8355–8358

    PubMed  CAS  Google Scholar 

  27. Suh J, Rabson A.B (2004) NF-kB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem 91:100–117

    PubMed  CAS  Google Scholar 

  28. Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, Konishi N (2002) Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4- hydroxyphenyl)retinamide-induced apoptosis in prostate cancer cells. Mol Carcinog 35:127–137

    PubMed  CAS  Google Scholar 

  29. Kimura K, Gelmann EP (2002) Propapoptotic effects of NF-kappaB in LNCaP prostate cancer cells lead to serine protease activation. Cell Death Differ 9:972–980

    PubMed  CAS  Google Scholar 

  30. Charlie D, Sawyers CL (2002) NF-KB activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol 22:2862–2870

    Google Scholar 

  31. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD (1999) Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18:7389–7394

    PubMed  CAS  Google Scholar 

  32. Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC (2003) Id-1 expression promotes cell survival through activation of NF-kappaB signalling pathway in prostate cancer cells. Oncogene 22:4498–4508

    PubMed  CAS  Google Scholar 

  33. Gustin JA, Maehama T, Dixon JE, Donner DB (2001) The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor kappa B activity. J Biol Chem 276:27740–27744

    PubMed  CAS  Google Scholar 

  34. Tantivejkul K, Loberg RD, Mawocha SC, Day LL, John LS, Pienta BA, Rubin MA, Pienta KJ. (2005) PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism. J Cell Biochem 96:641–652

    PubMed  CAS  Google Scholar 

  35. Lu T, Burdelya LG, Swiatkowski SM, Boiko AD, Howe PH, Stark GR, Gudkov AV (2004) Secreted transforming growth factor beta2 activates NF-kappaB, blocks apoptosis, and is essential for the survival of some tumor cells. Proc Natl Acad Sci USA 101:7112–7117

    PubMed  CAS  Google Scholar 

  36. Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG (2003) Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 22:4314–4332

    PubMed  CAS  Google Scholar 

  37. Zerbini LF, Wang Y, Cho JY, Libermann TA. (2003) Constitutive activation of nuclear factor KB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206–2215

    PubMed  CAS  Google Scholar 

  38. Keller ET, Chang C, Ershler WB (1996) Inhibition of NF kappa B activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem 271:26267–26275

    PubMed  CAS  Google Scholar 

  39. Zerbini LF, Wang Y, Cho JY, Libermann TA (2003) Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63:2206–2215

    PubMed  CAS  Google Scholar 

  40. Gao AC, Lou W, Isaacs JT (2000) Enhanced GBX2 expression stimulates growth of human prostate cancer cells via transcriptional up-regulation of the interleukin 6 gene. Clin Cancer Res 6:493–497

    PubMed  CAS  Google Scholar 

  41. Collum RG, Brutsaert S, Lee G, Schindler C.A (2000) Stat3-interacting protein (StIP1) regulates cytokine signal transduction. Proc Natl Acad Sci USA 97:10120–10125

    PubMed  CAS  Google Scholar 

  42. Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548–2546

    PubMed  CAS  Google Scholar 

  43. Siegall CB, Schwab G, Nordan RP, FitzGerald DJ, Pastan I (1990) Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Res 50:7786–7788

    PubMed  CAS  Google Scholar 

  44. Siegsmund MJ, Yamazaki H, Pastan I (1994) Interleukin 6 receptor mRNA in prostate carcinomas and benign prostate hyperplasia. J Urol 151:1396–1399

    PubMed  CAS  Google Scholar 

  45. Okamoto M, Lee C, Oyasu R (1997) Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res 57:141–146

    PubMed  CAS  Google Scholar 

  46. Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM (2000) Interleukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate 42:1–7

    PubMed  CAS  Google Scholar 

  47. Dhir R, Ni Z, Lou W, DeMiguel F, Grandis JR, Gao AC (2002) Stat3 activation in prostatic carcinomas. Prostate 51:241–246

    PubMed  CAS  Google Scholar 

  48. Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T (1998) STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 17:6670–6677

    PubMed  CAS  Google Scholar 

  49. Mori S, Murakami-Mori K, Bonavida B (1999) Interleukin-6 induces G1 arrest through induction of p27 (Kip1), a cyclin-dependent kinase inhibitor, and neuron-like morphology in LNCaP prostate tumor cells. Biochem Biophys Res Commun 257:609–614

    PubMed  CAS  Google Scholar 

  50. Spiotto MT, Chung TD (2000) STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate 42:186–195

    PubMed  CAS  Google Scholar 

  51. Sanford DC, Dewille JW (2005) C/EBPdelta is a downstream mediator of IL-6 induced growth inhibition of prostate cancer cells. Prostate 63:143–154

    PubMed  CAS  Google Scholar 

  52. Hobisch A, Ramoner R, Fuchs D, Godoy-Tundidor S, Bartsch G, Klocker H, Culig Z (2001) Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6) treatment express IL-6 and acquire an IL-6 partially resistant phenotype. Clin Cancer Res 7:2941–2948

    PubMed  CAS  Google Scholar 

  53. Steiner H, Godoy-Tundidor S, Rogatsch H, Berger AP, Fuchs D, Comuzzi B, Bartsch G, Hobisch A, Culig Z (2003) Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein kinase pathway. Am J Pathol 162:655–663

    PubMed  CAS  Google Scholar 

  54. Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T (1999) Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11:709–719

    PubMed  CAS  Google Scholar 

  55. Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351

    PubMed  CAS  Google Scholar 

  56. Bellido T, O’Brien CA, Roberson PK, Manolagas SC (1998) Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 273:21137–21144

    PubMed  CAS  Google Scholar 

  57. Debes JD, Schmidt LJ, Huang H, Tindall DJ (2002) p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62:5632–5636

    PubMed  CAS  Google Scholar 

  58. Lin DL, Whitney MC, Yao Z, Keller ET (2001) Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 7:1773–1781

    PubMed  CAS  Google Scholar 

  59. Chen T, Wang LH, Farrar WL (2000) Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 60:2132–2135

    PubMed  CAS  Google Scholar 

  60. Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H, Culig Z (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58:4640–4645

    PubMed  CAS  Google Scholar 

  61. Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, Wang PH, Chen YT, Chang C (2003) Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 305:462–469

    PubMed  CAS  Google Scholar 

  62. Ueda T, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277:7076–7085

    PubMed  CAS  Google Scholar 

  63. Bakin RE, Gioeli D, Sikes SA, Bissonette EA, Weber MJ (2003) Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res. 63:1981–1989

    PubMed  CAS  Google Scholar 

  64. Lin HK, Yeh S, Kang HY, Chang C (2001) Akt suppresses androgen induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 98:7200–7205

    PubMed  CAS  Google Scholar 

  65. Yang L, Lin HK, Altuwaijri S, Xie S, Wang L, Chang C (2003) APPL suppresses androgen receptor transactivation via potentiating Akt activity. J Biol Chem 278:16820–16827

    PubMed  CAS  Google Scholar 

  66. Jia L, Choong CS, Ricciardelli C, Kim J, Tilley WD, Coetzee GA (2004) Androgen receptor signaling: mechanism of interleukin-6 inhibition. Cancer Res 64:2619–2626

    PubMed  CAS  Google Scholar 

  67. Debes JD, Comuzzi B, Schmidt LJ, Dehm SM, Culig Z, Tindall DJ (2005) p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Res 65:5965–5973

    PubMed  CAS  Google Scholar 

  68. Heemers HV, Sebo TJ, Debes JD, Regan KM, Raclaw KA, Murphy LM, Hobisch A, Culig Z, Tindall DJ (2007) Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67:3422–3430

    PubMed  CAS  Google Scholar 

  69. Lin HK, Hu YC, Yang L, Altuwaijri S, Chen YT, Kang HY, Chang C (2003) Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 278:50902–50907

    PubMed  CAS  Google Scholar 

  70. Ghosh PM, Malik S, Bedolla R, Kreisberg JI (2003) Akt in prostate cancer: possible role in androgen-independence. Curr Drug Metabol 4:487–496

    CAS  Google Scholar 

  71. Xie S, Lin HK, Ni J, Yang L, Wang L, di Sant’Agnese PA, Chang C (2004) Regulation of interleukin-6-mediated PI3K activation and neuroendocrine differentiation by androgen signaling in prostate cancer LNCaP cells. Prostate 60:61–67

    PubMed  CAS  Google Scholar 

  72. Palmer J, Ernst M, Hammacher A, Hertzog PJ (2005) Constitutive activation of gp130 leads to neuroendocrine differentiation in vitro and in vivo. Prostate 62:282–289

    PubMed  CAS  Google Scholar 

  73. Wright M, Tsai M, Aebersold R (2003) Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol 17:1726–1737

    PubMed  CAS  Google Scholar 

  74. Sauer CG, Roemer A, Grobholz R (2006) Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate 66:227–234

    PubMed  CAS  Google Scholar 

  75. Jin RJ, Wang Y, Masumori N, Ishii K, Tsukamoto T, Shappell SB, Hayward SW, Kasper S, Matusik1 RJ (2004) NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res 64:5489–5495

    PubMed  CAS  Google Scholar 

  76. Levine L, Lucci JA 3rd, Pazdrak B, Cheng JZ, Guo YS, Townsend CM Jr, Hellmich MR (2003) Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63:3495–3502

    PubMed  CAS  Google Scholar 

  77. Shukla S, Maclennan GT, Marengo SR, Resnick MI, Gupta S (2005) Constitutive activation of P I3 K-Akt and NF-kappaB during prostate cancer progression in autochthonous transgenic mouse model. Prostate 64:224–239

    PubMed  CAS  Google Scholar 

  78. Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R, D’Armiento M, De Laurentiis M, De Placido S, Catalano G, Bianco AR, Ciardiello F (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444

    PubMed  CAS  Google Scholar 

  79. Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5:280–285

    PubMed  CAS  Google Scholar 

  80. Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C (1999) From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 96:5458–5463

    PubMed  CAS  Google Scholar 

  81. Qiu Y, Ravi L, Kung HJ (1998) Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature 393:83–85

    PubMed  CAS  Google Scholar 

  82. Le Page C, Koumakpayi IH, Lessard L, Mes-Masson AM, Saad F (2005) EGFR and Her-2 regulate the constitutive activation of NF-kappaB in PC-3 prostate cancer cells. Prostate 65:130–140

    PubMed  CAS  Google Scholar 

  83. Papapoulos SE, Hamdy NA, van der Pluijm G (2000) Bisphosphonates in the management of prostate carcinoma metastatic to the skeleton. Cancer 88(12 Suppl):3047–3053

    PubMed  CAS  Google Scholar 

  84. Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004) Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med 10:617–624

    PubMed  CAS  Google Scholar 

  85. Teitelbaum S (2000) Bone resorption by osteoclasts, Science 289:504–508

    Google Scholar 

  86. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, Mizokami A, Fu Z, Westman J, Keller ET (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107:1235–1244

    Article  PubMed  CAS  Google Scholar 

  87. Andela VB, Gordon AH, Zotalis G, Rosier RN, Goater JJ, Lewis GD, Schwarz EM, Puzas JE, O’Keefe RJ (2003) NFkappaB: a pivotal transcription factor in prostate cancer metastasis to bone. Clin Orthop Relat Res 415(Suppl):S75–S85

    PubMed  Google Scholar 

  88. Iwamura M, Hellman J, Cockett AT, Lilja H, Gershagen S. (1996) Alteration of the hormonal bioactivity of parathyroid hormone-related protein (PTHrP) as a result of limited proteolysis by prostate-specific antigen. Urology 48:317–325

    PubMed  CAS  Google Scholar 

  89. Kattan MW, Shariat SF, Andrews B, Zhu K, Canto E, Matsumoto K, Muramoto M, Scardino PT, Ohori M, Wheeler TM, Slawin KM (2003) The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol 21:3573–3579

    PubMed  CAS  Google Scholar 

  90. Chen F (2004) Endogenous inhibitors of nuclear factor-kappaB, an opportunity for cancer control. Cancer Res 64:8135–81358

    PubMed  CAS  Google Scholar 

  91. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-κB precursor protein and the activation of NF-κB. Cell 78:773–785

    PubMed  CAS  Google Scholar 

  92. An WG, Hwang SG, Trepel JB, Blagosklonny MV (2000) Protease inhibitor-induced apoptosis: accumulation of wt 53, p21 WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14:1276–1283

    PubMed  CAS  Google Scholar 

  93. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540

    PubMed  CAS  Google Scholar 

  94. Huang S, Pettaway CA, Uehara H (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–4197

    PubMed  CAS  Google Scholar 

  95. Herrmann JL, Briones F Jr, Brisbay S, Logothetis CJ, McDonnell TJ (1998) Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 17:2889–2899

    PubMed  CAS  Google Scholar 

  96. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076

    PubMed  CAS  Google Scholar 

  97. Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, Perez C, Logothetis CJ (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121

    PubMed  CAS  Google Scholar 

  98. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    PubMed  CAS  Google Scholar 

  99. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M, Nong Y, Wen D, Adams J, Dang L, Staudt LM (2005) Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11:28–40

    PubMed  CAS  Google Scholar 

  100. Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, Montagut C, Tapia M, Campas C, Dang L, Rolfe M, Ross JS, Gascon P, Albanell J, Mellado B (2006) Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res 12:5578–5586

    PubMed  CAS  Google Scholar 

  101. Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS Jr (2001) Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem 276:22382–22387

    PubMed  CAS  Google Scholar 

  102. Noguchi T, Shimazawa R, Nagasawa K (2002) Thalidomide and its analogues as cyclooxygenase inhibitors. Bioorg Med Chem Lett 54:31–38

    Google Scholar 

  103. Ng SS, Gutschow M, Weiss M, Hauschildt S, Teubert U, Hecker TK, Luzzio FA, Kruger EA, Eger K, Figg WD (2003) Antiangiogenic activity of N-substituted and tetrafluorinated thalidomide analogues. Cancer Res 63:3189–3194

    PubMed  CAS  Google Scholar 

  104. Kumar S, Witzig TE, Rajkumar SV (2004) Thalidomid: current role in the treatment of non-plasma cell malignancies. J Clin Oncol 22:2477–2488. Erratum in: J Clin Oncol 2004 22:2973

    PubMed  CAS  Google Scholar 

  105. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501

    PubMed  CAS  Google Scholar 

  106. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    PubMed  CAS  Google Scholar 

  107. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    PubMed  CAS  Google Scholar 

  108. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC (1996) Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 14:1756–1764

    PubMed  CAS  Google Scholar 

  109. Li Y, Sarkar FH (2002) Inhibition of nuclear factor (B activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 8:2369–2377

    PubMed  CAS  Google Scholar 

  110. Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG (2006) Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6:107

    PubMed  Google Scholar 

  111. Li Y, Kucuk O, Hussain M, Abrams J, Cher ML, Sarkar FH (2006) Antitumor, antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66:4816–4825

    PubMed  CAS  Google Scholar 

  112. Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, Pyles EA, Xu X, Daly TJ, Young MR, Fandl JP, Lee F, Carver S, McNay J, Bailey K, Ramakanth S, Hutabarat R, Huang TT, Radziejewski C, Yancopoulos GD, Stahl N (2003) Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med 9:47–52

    PubMed  CAS  Google Scholar 

  113. Ni Z, Lou W, Leman ES, Gao AC (2000) Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells. Cancer Res 60:1225–1228

    PubMed  CAS  Google Scholar 

  114. Xi S, Gooding WE, Grandis JR (2005) In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene 24:970–979

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre de la Taille.

Additional information

B. Paule and S. Terry contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paule, B., Terry, S., Kheuang, L. et al. The NF-κB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches?. World J Urol 25, 477–489 (2007). https://doi.org/10.1007/s00345-007-0175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-007-0175-6

Keywords

Navigation