Skip to main content
Log in

Magicity in the nuclei with N = 32 & 34

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Inspired by the recent experimental evidences for double magicity in 52,54Ca, we have employed relativistic mean-field (RMF) approach with density-dependent meson-nucleon couplings using DD-ME2 parameter for a systematic study of nuclei with neutron numbers N = 32 and 34 with the help of ground state properties of even–even nuclei. Our extensive calculations include deformation, binding energies, 2p-separation energies, radii, etc. We compare our results with the available experimental data and another parameter of RMF. Our results of potential energy surface, two proton shell gap, isotopic shift, and normalized radius demonstrate signature of double magicity in N = 32 and 34 isotones, in particular for 46,48Si, 60,62Ni along with what found for 52,54Ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenbusch, M., Ascher, P., Atanasov, D., Barbieri, C., Beck, D., Blaum, K., Borgmann, C.H., Breitenfeldt, M., Cakirli, R.B., Cipollone, A., George, S., Herfurth, F., Kowalska, M., Kreim, S., Lunney, D., Manea, V., Navrátil, P., Neidherr, D., Schweikhard, L., Somà, V., Stanja, J., Wienholtz, F., Wolf, R.N., Zuber, K.: Probing the N = 32 shell closure below the magic proton number Z = 20:, Mass measurements of the exotic isotopes 52,53K. Phys. Rev. Lett. 114, 202501 (2015). https://doi.org/10.1103/PhysRevLett.114.202501

    Article  ADS  Google Scholar 

  2. Michimasa, S., et al.: Magic Nature of Neutrons inm54ca: First Mass Measurements of 55−− 57ca. Phys. Rev. Lett. 121, 022506 (2018). https://doi.org/10.1103/PhysRevLett.121.022506

    Article  ADS  Google Scholar 

  3. Kumawat, M., Saxena, G., Kaushik, M., Sharma, R., Jain, S.K.: Description of nuclei with magic number Z(N)= 6. Can. J. Phys. 96, 1413–1419 (2018). https://doi.org/10.1139/cjp-2017-1013

    Article  ADS  Google Scholar 

  4. Stanoiu, M, Azaiez, F, Dombrádi, Z., et al.: N = 14 and 16 shell gaps in neutron-rich oxygen isotopes. Phys. Rev. C 69, 034312 (2004). https://doi.org/10.1103/PhysRevC.69.034312

    Article  ADS  Google Scholar 

  5. Brown, B.A., Richter, W.A.: Magic numbers in the neutron-rich oxygen isotopes. Phys. Rev. C 72, 057301 (2005). https://doi.org/10.1103/PhysRevC.72.057301

    Article  ADS  Google Scholar 

  6. Becheva, E., Blumenfeld, Y., Khan, E., et al.: N = 14 Shell Closure in 22O Viewed through a Neutron Sensitive Probe. Phys. Rev. Lett 96, 012501 (2006). https://doi.org/10.1103/PhysRevLett.96.012501

    Article  ADS  Google Scholar 

  7. Hoffman, C.R., Baumann, T., Bazin, D., et al.: Evidence for a doubly magic 24O. Phys. Lett. B 672, 17 (2009). https://doi.org/10.1016/j.physletb.2008.12.066

    Article  ADS  Google Scholar 

  8. Tshoo, K., Satou, Y., Bhang, H., et al.: N = 16 Spherical Shell Closure in 24O. Phys. Rev. Lett 109, 022501 (2012). https://doi.org/10.1103/PhysRevLett.109.022501

    Article  ADS  Google Scholar 

  9. Kanungo, R., Tanihata, I., Ozawa, A.: Observation of new neutron and proton magic numbers. Phys. Lett. B 528, 58 (2002). https://doi.org/10.1016/S0370-2693(02)01206-6

    Article  ADS  Google Scholar 

  10. Gade, A., Janssens, R.V.F., Bazin, D., et al.: Cross-shell excitation in two-proton knockout: Structure of 52Ca. Phys. Rev. C 74(R), 021302 (2006). https://doi.org/10.1103/PhysRevC.74.021302

    Article  ADS  Google Scholar 

  11. Wienholtz, F., Beck, D., Blaum, K., et al.: Erratum: Masses of exotic calcium isotopes pin down nuclear forces. Nature. 498, 346 (2013). https://doi.org/10.1038/nature12226

    Article  ADS  Google Scholar 

  12. Steppenbeck, D., Takeuchi, S., Aoi, N., et al.: Evidence for a new nuclear ’magic number’ from the level structure of 54Ca. Nature 502, 207 (2013). https://doi.org/10.1038/nature12522

    Article  ADS  Google Scholar 

  13. Sharma, R., Jain, A., Kaushik, M., Jain, S.K., Saxena, G.: Structural properties of nuclei with semi-magic number N(Z)= 40. Int. J of Mod Phy E. https://doi.org/10.1142/S0218301321500701 (2021)

  14. Togano, Y., Yamada, Y., Iwasa, N., et al.: Hindered Proton Collectivity in \(^{28}_{16}\textit {S}_{12}\),: Possible Magic Number at Z = 16. Phys. Rev. Lett. 222501, 108 (2012). https://doi.org/10.1103/PhysRevLett.108.22250

    Google Scholar 

  15. Iwasaki, H., Motobayashib, T., Akiyoshic, H., et al.: Low - lying intruder 1 state in 12Be and the melting of the N = 8 shell closure. Phys. Lett. B 481, 7 (2000). https://doi.org/10.1016/S0370-2693(00)01017-0

    Article  ADS  Google Scholar 

  16. Doornenbal, P., Scheit, H., Takeuchi, S., et al.: In-Beam γ-Ray Spectroscopy of 34,36,38Mg: Merging the N = 20 and N = 28 Shell Quenching. Phys. Rev. Lett 111, 212502 (2013). https://doi.org/10.1103/PhysRevLett.111.212502

    Article  ADS  Google Scholar 

  17. Bastin, B., Grévy, S., Sohler, D., et al.: Collapse of the N = 28 Shell Closure in 42Si. Phys. Rev. Lett. 99, 022503 (2007). https://doi.org/10.1103/PhysRevLett.99.022503

    Article  ADS  Google Scholar 

  18. Liu, J., Niu, Y.F., Long, W.H.: New magicity N = 32 and 34 triggered by strong couplings between Dirac inversion partners. Phys. Lett. B 806, 135524 (2020). https://doi.org/10.1016/j.physletb.2020.135524

    Article  Google Scholar 

  19. Saxena, G., Kaushik, M.: Behaviour of the pf shell under the RMF+BCS description. Chin. J. Phys. 55, 1149 (2017). https://doi.org/10.1016/j.cjph.2017.03.022

    Article  Google Scholar 

  20. Leistenschneider, E., et al.: Dawning of the N = 32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes. Phys. Rev. Lett. 120 (06), 2503 (2018). https://doi.org/10.1103/PhysRevLett.120.062503

    Article  Google Scholar 

  21. Lalazissis, G.A., Niksic, T., Vretenar, D., Ring, P.: New relativistic mean-field interaction with density-dependent meson-nucleon couplings. Phys. Rev. C 71, 024312 (2005). https://doi.org/10.1103/PhysRevC.71.024312

    Article  ADS  Google Scholar 

  22. Lalazissis, G.A., Karatzikos, S., Fossion, R., Pena Arteaga, D., Afanasjev, A.V., Ring, P.: The effective force NL3 revisited. Phys. Lett. B 671, 36 (2009). https://doi.org/10.1016/j.physletb.2008.11.070

    Article  ADS  Google Scholar 

  23. https://www.nndc.bnl.gov/

  24. Saxena, G., Kumawat, M., Agrawal, B.K., Aggarwal, M.: A systematic study of the factors affecting central depletion in nuclei. J. Phys. G:, Nucl. Part. Phys. 46, 065105 (2019). https://doi.org/10.1088/1361-6471/ab0853

    Article  ADS  Google Scholar 

  25. Saxena, G., Kumawat, M., Kaushik, M., Jain, S.K., Aggarwal, M.: Two-Proton Radioactivity with 2p halo in light mass nuclei A = 18 − 34. Phys. Lett. B 775, 126 (2017). https://doi.org/10.1016/j.physletb.2017.10.055

    Article  ADS  Google Scholar 

  26. El Adri, M., Oulne, M.: Neutron shell closure at N = 32 and N = 40 in Ar and Ca isotopes. Eur. Phys. J. Plus 135, 268 (2020). https://doi.org/10.1140/epjp/s13360-020-00277-z

    Article  Google Scholar 

  27. Gorges, C., et al.: . Phys. Rev. Lett. 192502, 122 (2019). https://doi.org/10.1103/PhysRevLett.122.192502

    Google Scholar 

  28. Hofstadter, R., Collard, H.R.: Nuclear Radii, in Landolt-Börnstein, Group I. Vol. 2. Edited by H. Schopper, Springer, Berlin. https://doi.org/10.1007/10201056-14(1967)

  29. Angeli, I., Marinova, K.P.: Correlations of nuclear charge radii withother nuclear observable. J. Phys. G: Nucl. Part. Phys. 42, 055108 (2015). https://doi.org/10.1088/0954-3899/42/5/055108

    Article  ADS  Google Scholar 

  30. Angeli, I., Marinova, K.P.: Table of experimental nuclear ground state charge radii: An updat. At. Data Nucl. Data Tables 99, 69 (2013). https://doi.org/10.1016/j.adt.2011.12.006

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support provided by Science and Engineering Research Board (DST), Govt. of India under CRG/2019/001851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this work.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions (HYPERFINE 2021), 5-10 September 2021, Brasov, Romania

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Jain, A., Jain, S.K. et al. Magicity in the nuclei with N = 32 & 34. Hyperfine Interact 242, 35 (2021). https://doi.org/10.1007/s10751-021-01751-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01751-5

Keywords

Navigation