Skip to main content
Log in

Effect of iron oxide nanoparticles functionalization by citrate analyzed using Mössbauer spectroscopy

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Comparison of the Mössbauer spectra of the as-prepared native iron oxide nanoparticles (IONs) and the citrate-functionalized IONs demonstrates differences in the spectral shapes at room temperature and variations of the 57Fe hyperfine parameters at 80 K. The observed differences are claimed to result from capping the IONs with citrate, thus decreasing the particle-particle interaction while promoting interaction of the outer atomic layers of the IONs with the surface molecular coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acid media. IEEE Trans. Magn. 17, 1247–1248 (1981)

    Article  ADS  Google Scholar 

  2. Goetze, T., Gansau, C., Buske, N., Roeder, M., Gornet, P., Bahr, M.: Biocompatible core/shell nanoparticles. J. Magn. Magn. Mater. 252, 399–402 (2002)

    Article  ADS  Google Scholar 

  3. Tombácz, E., Turcu, R., Socoliuc, V., Vékás, L.: Magnetic iron oxide nanoparticles: recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem. Biophys. Res. Commun. 468, 442–453 (2015)

    Article  Google Scholar 

  4. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterization, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  Google Scholar 

  5. Coelho, B.C.P., Siqueira, E.R., Ombredane, A.S., Joanitti, G.A., Chaves, S.B., da Silva, S.W., Chaker, J.A., Longo, J.P.F., Azevedo, R.B., Morais, P.C., Sousa, M.H.: Maghemite–gold core–shell nanostructures (γ-Fe2O3@Au) surface-functionalized with aluminium phthalocyanine for multi-task imaging and therapy. RSC Adv. 7, 11223–11232 (2017)

    Article  Google Scholar 

  6. Daou, T.J., Grenèche, J.M., Pourroy, G., Buathong, S., Derory, A., Ulhaq-Bouillet, C., Donnio, B., Guillon, D., Begin-Colin, S.: Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem. Mater. 20, 5869–5875 (2008)

    Article  Google Scholar 

  7. Palma, S.I.C.J., Marciello, M., Carvalho, A., Veintemillas-Verdaguer, S., del Puerto Morales, M., Roque Ana, C.A.: Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. J. Colloid Interface Sci. 437, 147–155 (2015)

    Article  ADS  Google Scholar 

  8. Cheraghipour, E., Javadpour, S., Mehdizadeh, A.R.: Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed. Sci. Eng. 5, 715–719 (2012)

    Article  Google Scholar 

  9. Li, L., Mak, K.Y., Leung, C.W., Chan, K.Y., Chan, W.K., Zhong, W., Pong, P.W.T.: Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectr. Engin. 110, 329–334 (2013)

    Article  Google Scholar 

  10. da Silva, S.W., Guilherme, L.R., de Oliveira, A.C., Garg, V.K., Rodrigues, P.A.M., Coaquira, J.A.H., da Silva Ferreira, Q., de Melo, G.H.F., Lengyel, A., Szalay, R., Homonnay, Z., Klencsár, Z., Tolnai, G., Kuzmann, E.: Mössbauer and Raman spectroscopic study of oxidation and reduction of iron oxide nanoparticles promoted by various carboxylic acid layers. J. Radioanal. Nucl. Chem. 312, 111–119 (2017)

    Article  Google Scholar 

  11. Lengyel, A., Tolnai, G., Klencsár, Z., Garg, V.K., de Oliveira, A.C., Singh, L.H., Homonnay, Z., Szalay, R., Németh, P., Szabolcs, B., Ristic, M., Music, S., Kuzmann, E.: The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles. J. Nanopart. Res. 20, 137 (2018)

    Article  ADS  Google Scholar 

  12. Lengyel A., Garg V.K., de Oliveira A.C., da Silva S.W., Guilherme L.R., Klencsár Z., Homonnay Z., Coaquira J.A.H.,·Tolnai G., Kuzmann E. Mössbauer spectroscopy control of the preparation of citric- and mandelic acid functionalized nanomagnetites. Hyperfine Interact. 239, 17 (2018)

    Article  ADS  Google Scholar 

  13. Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta, Part A: Mol. and Biomol. Spectroscopy. 100, 78–87 (2013)

    Article  ADS  Google Scholar 

  14. Oshtrakh M.I., Semionkin V.A.: Mössbauer Spectroscopy with a High Velocity Resolution: Principles and Applications. In: Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, Eds. J. Tuček, M. Miglierini, AIP Conference Proceedings. AIP Publishing, Melville, New York, 2016, 1781, 020019

  15. Klencsár, Z., Kuzmann, E., Vértes, A.: User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 210, 105–118 (1996)

    Article  Google Scholar 

  16. Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    Article  ADS  Google Scholar 

  17. Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., Shon, I.-J.: A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique. Talanta. 94, 348–352 (2012)

    Article  Google Scholar 

  18. Oshtrakh, M.I., Ushakov, M.V., Šepelák, V., Semionkin, V.A., Morais, P.C.: Study of iron oxide nanoparticles using Mössbauer spectroscopy with a high velocity resolution. Spectrochim. Acta, Part A: Molec. and Biomolec. Spectroscopy. 152, 666–679 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank LabMic-UFG for TEM measurements. M.H.S. and P.C.M. gratefully acknowledge financial support from Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF). M.I.O., M.V.U. and V.A.S. were supported by the Ministry of Science and Higher Education of the Russian Federation and Act 211 of the Government of the Russian Federation, contract № 02.A03.21.0006. E.K. was supported by NKFIH-OTKA (the grant № 131963). This work was carried out within the Agreement of Cooperation between the Ural Federal University (Ekaterinburg) and the Eötvös Loránd University (Budapest).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Oshtrakh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, M.V., Sousa, M.H., Morais, P.C. et al. Effect of iron oxide nanoparticles functionalization by citrate analyzed using Mössbauer spectroscopy. Hyperfine Interact 241, 27 (2020). https://doi.org/10.1007/s10751-020-1701-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-020-1701-9

Keywords

Navigation