Skip to main content
Log in

Synthesis of Fe3O4–Fe2O3@C Core-Shell Nanoparticles: Effect of Reactional Parameters on Structural and Magnetics Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The goal of this paper was to synthesize and characterize core–shell iron-carbon nanoparticles. For this purpose, nanoparticles were synthetized via a hydrothermal co-precipitation route, applying a 22 factorial experimental design with a central point, and varying both the concentration of the iron precursor (iron nitrate) and the reaction temperature. The nanoparticles were characterized via the following analysis: vibrating sample magnometry (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), high resolution field emission gun scanning electron microscopy (SEM/FEG) and transmission electron microscopy (TEM) analysis. The results showed that the hydrothermal co-precipitation synthesis route enabled the production of Fe3O4–Fe2O3@C core–shell nanoparticles with dimensions between 4 and 8 nm. An increase in iron nitrate concentration and temperature during synthesis entailed a decrease in the remnant field and the magnetization of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X. Jian, X. Xiao, L. Deng, W. Tian, X. Wang, N. Mahmood, S.X. Dou, ACS Appl. Mater. Interfaces. 10, 9369 (2018)

    Article  CAS  Google Scholar 

  2. Z. Zhang, J. Kong, J. Hazard. Mater. 193, 325 (2011)

    Article  CAS  Google Scholar 

  3. S. Mandal, World J. Biol. Chem. 7, 158 (2016)

    Article  Google Scholar 

  4. A. Ali, H. Zafar, M. Zia, I.U. Haq, A.R. Phull, J.S. Ali, A. Hussain, Nanotechnol. Sci. Appl. 9, 49 (2016)

    Article  CAS  Google Scholar 

  5. J. Zheng, Z.Q. Liu, X.S. Zhao, M. Liu, X. Liu, W. Chu, Nanotechnology 23, 165601 (2012)

    Article  CAS  Google Scholar 

  6. Y. Guo, X. Zhang, X. Feng, X. Jia, L. Zhang, L. Zhang, XingzhongDeng. Compos. B Eng. 155, 282 (2018)

    Article  CAS  Google Scholar 

  7. Y. Liu, Y. Fu, L. Liu, W. Li, J. Guan, G. Tong, ACS Appl. Mater. Interfaces. 10, 16511 (2018)

    Article  CAS  Google Scholar 

  8. X. Xiao, W. Zhu, W. Wei, Y. Guo, H. Wang, W. Tian, J. Fu, X. Jian, Compos. B Eng. 152, 316 (2018)

    Article  CAS  Google Scholar 

  9. L. Yin, T. Chen, S. Liu, Y. Gao, B. Wu, Y. Wei, G. Li, X. Jian, X. Zhang, RSC Adv. 5, 91665 (2015)

    Article  CAS  Google Scholar 

  10. J. Huang, Y. Li, X. Jia, H. Song, Tribol. Int. 129, 427 (2019)

    Article  CAS  Google Scholar 

  11. Y.-H. Jin, S.-D. Seo, H.-W. Shim, K.-S. Park, D.-W. Kim, Nanotechnology 23, 125402 (2012)

    Article  Google Scholar 

  12. V.V. Srdić, B. Mojić, M. Nikolić, S. Ognjanović, Process. Appl. Ceram. 7, 45 (2013)

    Article  Google Scholar 

  13. X.B. Zhang, H.W. Tong, S.M. Liu, G.P. Yong, Y.F. Guan, J. Mater. Chem. A 1, 7488 (2013)

    Article  CAS  Google Scholar 

  14. C. Sun, K. Sun, S. Tang, Mater. Chem. Phys. 207, 181 (2018)

    Article  CAS  Google Scholar 

  15. M.M. Lima, J.P.Z. Gonçalves, C. Soares, H.G. Riella, S.C. Fernandes, M.A. Fiori, L.L. Silva, Mater. Sci. Forum 899, 221 (2017)

    Article  Google Scholar 

  16. R.G. Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)

    Article  Google Scholar 

  17. S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, Nanotechnology 18, 035602 (2007)

    Article  Google Scholar 

  18. C. Fu, D. He, Y. Wang, X. Zhao, RSC Adv. 8, 15358 (2018)

    Article  CAS  Google Scholar 

  19. M.M. Lima, D.L.P. Macuvele, L. Muller, J. Nones, L.L. Silva, M.A. Fiori, C. Soares, H.G. Riella, J. Adv. Chem. Eng. 07, 1 (2017)

    Article  Google Scholar 

  20. D.L. Xiao, H. Li, H. He, R. Lin, P.L. Zuo, Xinxing Tan Cailiao/New Carbon Mater. 29, 15 (2014)

    Article  CAS  Google Scholar 

  21. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)

    Article  CAS  Google Scholar 

  22. P. Luo, J. Yu, Z. Shi, F. Wang, L. Liu, H. Huang, Y. Zhao, H. Wang, G. Li, Y. Zou, Mater. Lett. 80, 121 (2012)

    Article  CAS  Google Scholar 

  23. B. Wang, G. Wang, Z. Zheng, H. Wang, J. Bai, J. Bai, Electrochim. Acta 106, 235 (2013)

    Article  CAS  Google Scholar 

  24. M.C. Mascolo, Y. Pei, T.A. Ring, Materials 6, 5549 (2013)

    Article  CAS  Google Scholar 

  25. J. Pu, L. Shen, S. Zhu, J. Wang, W. Zhang, Z. Wang, J. Solid State Electrochem. 18, 1067 (2014)

    Article  CAS  Google Scholar 

  26. Z. Lou, H. Huang, M. Li, T. Shang, C. Chen, Materials 7, 97 (2014)

    Article  Google Scholar 

  27. H. Mi, Y. Xu, W. Shi, H.D. Yoo, O.B. Chae, S.M. Oh, Mater. Res. Bull. 47, 152 (2012)

    Article  CAS  Google Scholar 

  28. H. Qiao, Q. Luo, J. Fu, J. Li, D. Kumar, Y. Cai, F. Huang, Q. Wei, J. Alloy. Compd. 513, 220 (2012)

    Article  CAS  Google Scholar 

  29. Y. Liu, Y. Li, K. Jiang, G. Tong, T. Lv, W. Wu, J. Mater. Chem. C 4, 7316 (2016)

    Article  CAS  Google Scholar 

  30. B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, J. Photochem. Photobiol., A 314, 178 (2016)

    Article  CAS  Google Scholar 

  31. L. Qu, T. Han, Z. Luo, C. Liu, Y. Mei, T. Zhu, J. Phys. Chem. Solids 78, 20 (2015)

    Article  CAS  Google Scholar 

  32. L. Liang, Q. Zhu, T. Wang, F. Wang, J. Ma, L. Jing, J. Sun, Microporous Mesoporous Mater. 197, 221 (2014)

    Article  CAS  Google Scholar 

  33. T. Hao, X. Rao, Z. Li, C. Niu, J. Wang, X. Su, J. Alloy. Compd. 617, 76 (2014)

    Article  CAS  Google Scholar 

  34. F. Heider, A. Zitzelsberger, K. Fabian, Phys. Earth Planet. Inter. 93, 239 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge research supported by LCME-UFSC and financial support from the Ministério da Ciência e Tecnologia/Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq/Brazil) and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cíntia Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, M.M., Macuvele, D.L.P., Nones, J. et al. Synthesis of Fe3O4–Fe2O3@C Core-Shell Nanoparticles: Effect of Reactional Parameters on Structural and Magnetics Properties. J Inorg Organomet Polym 29, 1848–1861 (2019). https://doi.org/10.1007/s10904-019-01146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01146-8

Keywords

Navigation