Skip to main content
Log in

A new perspective on charge radii around Z = 82

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In the last 35 years, a large amount of data on the changes in the mean-square charge radii, δr 2〉, around the lead region has been gathered. Isotopic chains are often normalised and compared to reduce the impact of systematic uncertainties of the extracted δr 2〉 from the isotope shifts. However, this biased picture can obscure other interesting effects that are apparent in absolute scale. In this contribution, we review the extent of the knowledge on the δr 2〉 in the lead region in addition to observations on the absolute scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulm, G., et al.: Isotope shift of 182Hg and an update of nuclear moments and charge radii in the isotope range 181Hg- 206Hg. Z. Phys. A 325, 247–259 (1986)

    ADS  Google Scholar 

  2. Borchers, W., et al.: Hyperfine structure and isotope shift investigations in 220−222Rn for the study of nuclear structure beyond Z=82. Hyperfine Interac 34, 25–29 (1987)

    Article  ADS  Google Scholar 

  3. Ahmad, S.A., et al.: Mean square charge radii of radium isotopes and octupole deformation in the 220−228Ra region. Nucl. Phys. A 483, 244–268 (1988)

    Article  ADS  Google Scholar 

  4. Coc, A., et al.: Hyperfine structures and isotope shifts of 207−213,220−228Fr; possible evidence of octupolar deformation. Phys. Lett 163B, 66–70 (1985)

    Article  ADS  Google Scholar 

  5. Gaffney, L.P., et al.: Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 497, 199 (2013)

    Article  ADS  Google Scholar 

  6. Fink, D.A., et al.: In-source laser spectroscopy with the laser ion source and trap: First study of 217,219Po at the border of the regions of odd-even staggering reversal and octupole deformation. Phys. Rev. X 5, 011018 (2015)

    Google Scholar 

  7. Budinčević, I., et al.: Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry. Phys. Rev. C 90, 014317 (2014)

    Article  ADS  Google Scholar 

  8. Sharma, M.M., Lalazissis, G., Konig, J., Ring, P.: Isospin dependence of the spin-orbit force and effective nuclear potentials. Phys. Rev. Lett 74, 3744 (1995)

    Article  ADS  Google Scholar 

  9. Reinhard, P.G., Flocard, H.: Nuclear effective forces and isotope shifts. Nucl. Phys. A 584, 467 (1995)

    Article  ADS  Google Scholar 

  10. Goddard, P.M., Stevenson, P.D., Rios, A.: Charge radius isotope shift across the N=126 shell gap. Phys. Rev. Lett. 110, 032503 (2013)

    Article  ADS  Google Scholar 

  11. Nakada, H., Inakura, T.: Effect of three-nucleon spin-orbit interaction on isotope shifts of Pb nuclei. Phys. Rev. C 91, 021302(R) (2015)

    Article  ADS  Google Scholar 

  12. Seliverstov, M.D., et al.: Charge radii of odd-A 191−211Po isotopes. Phys. Lett. B 719, 362–366 (2013)

    Article  ADS  Google Scholar 

  13. Farooq-Smith, G., et al.: Structure of the short-lived isotope 214Fr in the vicinity of the N=126 shell closure via combined laser and decay spectroscopy. Phys. Rev. C 94, 054305 (2016)

    Article  ADS  Google Scholar 

  14. Heyde, K., Wood, J.L.: Shape coexistence in atomic nuclei. Rev. Mod. Phys 83, 1467–1521 (2011)

    Article  ADS  Google Scholar 

  15. Andreyev, A.N., et al.: A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb. Nature 405, 430 (2000)

    Article  ADS  Google Scholar 

  16. De Witte, H., et al.: Nuclear charge radii of neutron deficient lead isotopes beyond N=104 mid-shell investigated by in-source laser spectroscopy. Phys. Rev. Lett. 98, 112502 (2007)

    Article  ADS  Google Scholar 

  17. Cocolios, T.E., et al.: Early onset of ground state deformation in neutron deficient polonium isotopes. Phys. Rev. Lett. 106, 052503 (2011)

    Article  ADS  Google Scholar 

  18. Le Blanc, F., et al.: Large odd-even staggering in the very light platinum isotopes from laser spectroscopy. Phys. Rev. C 60, 054310 (1999)

    Article  ADS  Google Scholar 

  19. Savard, G., et al.: Laser spectroscopy of laser-desorbed gold isotopes. Nucl. Phys. A 512, 241–252 (1990)

    Article  ADS  Google Scholar 

  20. Pearson, M.R., et al.: Nuclear moments and charge radii of bismuth isotopes. J. Phys. G 26, 1829–1848 (2000)

    Article  ADS  Google Scholar 

  21. Marsh, B.A.: In-source laser resonance ionization at ISOL facilities. Ph.D. thesis, School of Physics & Astronomy, The University of Manchester, United Kingdom. 184 (2007)

  22. Barzakh, A.E., et al.: Changes in the mean-square charge radii and magnetic moments of neutron-deficient Tl isotopes. Phys. Rev. C 88, 024315 (2013)

    Article  ADS  Google Scholar 

  23. Seliverstov, M.D., et al.: Charge radii and magnetic moments of odd- A 183−189Pb isotopes. Eur. Phys. J. A 41, 315–321 (2009)

    Article  ADS  Google Scholar 

  24. Barzakh, A.E., et al.: Laser spectroscopy of intruder states in 193,195,197Bi. Phys. Rev. C 94, 024334 (2016)

    Article  ADS  Google Scholar 

  25. Flanagan, K.T., et al.: Collinear resonance ionization spectroscopy of neutron-deficient francium isotopes. Phys. Rev. Lett. 111, 212501 (2013)

    Article  ADS  Google Scholar 

  26. Lynch, K.M., et al.: Decay-assisted laser spectroscopy of neutron-deficient francium. Phys. Rev. X 4, 011055 (2014)

    Google Scholar 

  27. de Groote, R.P, et al.: Use of a continuous waave laser and Pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy. Phys. Rev. Lett. 115, 132501 (2015)

  28. Lynch, K.M., et al.: Combined high-resolution laser spectroscopy and nuclear decay spectroscopy for the study of the low-lying states in 206Fr, 202At, and 198Bi. Phys. Rev. C 93, 014319 (2016)

    Article  ADS  Google Scholar 

  29. Berdichevsky, D., Tondeur, F.: Nuclear core densities, isotope shifts, and the parametrization of the droplet model. Z. Phys. A 322, 141–147 (1985)

    Article  ADS  Google Scholar 

  30. Cheal, B., Flanagan, K.T.: Progress in laser spectroscopy at radioactive ion beam facilities. Phys, J. G 37, 113101 (2010)

    Article  Google Scholar 

  31. Blaum, K., Dilling, J., Nörterhäuser, W.: Precision atomic physics techniques for nuclear physics with radioactive beams. Phys. Scripta T152, 014017 (2013)

    Article  ADS  Google Scholar 

  32. Campbell, P., Moore, I.D., Pearson, M.R.: Laser spectroscopy for nuclear structure physics. Part. Phys. Nucl. Phys. Rep 86, 127–180 (2015)

    Article  ADS  Google Scholar 

  33. Cheal, B., Cocolios, T.E., Fritzsche, S.: Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations. Phys. Rev. A 86, 042501 (2012)

    Article  ADS  Google Scholar 

  34. Anselments, M., Faubel, W., Göring, S., Hanser, A., Meisel, G., Rebel, H., Schatz, G.: The odd-even staggering of the nuclear charge radii of Pb isotopes. Nucl. Phys. A 451, 471–780 (1986)

    Article  ADS  Google Scholar 

  35. Dzuba, V.A., et al.: Calculation of isotope shifts for cesium and francium. Phys. Rev. A 72, 022503 (2005)

    Article  ADS  Google Scholar 

  36. Borschevsky, A., et al.: Predicted spectrum of atomic nobelium. Phys. Rev. A 75, 042514 (2007)

    Article  ADS  Google Scholar 

  37. Collister, R., et al.: Isotope shifts in francium isotopes 206−213Fr and 221Fr. Phys. Rev. C 90, 052502 (2014)

    Article  Google Scholar 

  38. Heylen, H., Babcock, C., et al.: Changes in the nuclear structure along the Mn isotopic chain studied via charge radii. Phys. Rev. C 94, 054321 (2016)

    Article  ADS  Google Scholar 

  39. Bissell, M.L., et al.: Cu charge radii reveal a weak sub-shell effect at N=40. Phys. Rev. C 93, 064318 (2016)

    Article  ADS  Google Scholar 

  40. Fricke, G., Heilig, K.: Nuclear Charge Radii. Springer, Berlin (2005)

    Google Scholar 

  41. Wohlfahrt, H.D., Shera, E.B., Hoehn, M.V., Yamazaki, Y., Steffen, R.M.: Nuclear charge distribution in 1f 7/2-shell nuclei from muonic x-ray measurements. Hyperfine Interac 23, 533–548 (1981)

    Google Scholar 

  42. Fricke, G., et al.: Behaviour of the nuclear charge radii systematics in the sd shell from muonic atom measurements. Phys. Rev. C 45, 80–89 (1992)

    Article  ADS  Google Scholar 

  43. Nadjakov, E.G., Marinova, K.P., Gangrsky, Y.P.: Systematics of nuclear charge radii. At. Data Nucl. Data Tables 56, 133–157 (1994)

    Article  ADS  Google Scholar 

  44. Fricke, G., et al.: Nuclear ground state charge radii from electromagnetic interactions. At. Data Nucl. Data Tables 60, 177–285 (1995)

    Article  ADS  Google Scholar 

  45. Angeli, I., Marinova, K.P.: Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 99, 69–95 (2013)

    Article  ADS  Google Scholar 

  46. Van Beveren, C.: Laser-assisted decay and optical spectroscopy studies of neutron-deficient thallium isotopes. Ph.D. thesis, KU Leuven, Belgium. 192 (2016)

  47. Celenza, L.S., Harindranath, A., Shakin, C.M.: Distribution of charge and matter in nuclei: Charge density difference of 206Pb and 205Tl. Phys. Rev. C 32, 2173–2175 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Cocolios.

Additional information

This article is part of the Topical Collection on Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016

Edited by Krassimira Marinova, Magdalena Kowalska and Zdzislaw Błaszczak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocolios, T.E. A new perspective on charge radii around Z = 82. Hyperfine Interact 238, 16 (2017). https://doi.org/10.1007/s10751-016-1391-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-016-1391-5

Keywords

PACS

Navigation