Skip to main content
Log in

The limits of nuclear mass and charge

  • Perspective
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

Four new elements with atomic numbers Z = 113, 115, 117 and 118 have recently been added to the periodic table. The questions pertaining to these superheavy systems are at the forefront of research in nuclear and atomic physics, and chemistry. This Perspective offers a high-level view of the field and outlines future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Landscape of nucleon-bound nuclei as a function of Z and N.
Fig. 2: Neutron (left) and proton (right) densities of 294Og (top), 302Og (top) and 326Og (bottom) calculated with SV-min in the (x, z) plane at y = 0.
Fig. 3: Qα values for the α-decay chain of 294Og predicted by several global theoretical models compared to experimental and estimated values.
Fig. 4: Electron localization function for group-18 elements xenon, radon and oganesson predicted in relativistic calculations.
Fig. 5: Dominating decay channels predicted in density functional theories calculations.

Similar content being viewed by others

References

  1. Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, E. Discovery of the elements with atomic numbers Z  = 113, 115 and 117. Pure Appl. Chem. 88, 139–153 (2016).

    Article  Google Scholar 

  2. Karol, P. J., Barber, R. C., Sherrill, B. M., Vardaci, E. & Yamazaki, E. Discovery of the element with atomic number Z  = 118 completing the 7th row of the periodic table (IUPAC Technical Report). Pure Appl. Chem. 88, 155–160 (2016).

    Article  Google Scholar 

  3. Münzenberg, G. & Morita, K. Synthesis of the heaviest nuclei in cold fusion reactions. Nucl. Phys. A 944, 3–4 (2015).

    Article  ADS  Google Scholar 

  4. Oganessian, Y. T. & Utyonkov, V. K. Super-heavy element research. Rep. Prog. Phys. 78, 036301 (2015).

    Article  ADS  Google Scholar 

  5. Düllmann, C. E. Studying chemical properties of the heaviest elements: one atom at a time. Nucl. Phys. News 27, 14–20 (2017).

    Article  Google Scholar 

  6. Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).

    Article  ADS  Google Scholar 

  7. Ćwiok, S., Dobaczewski, J., Heenen, P.-H., Magierski, P. & Nazarewicz, W. Shell structure of the superheavy elements. Nucl. Phys. A 611, 211–246 (1996).

    Article  ADS  Google Scholar 

  8. Heenen, P.-H., Skalski, J., Staszczak, A. & Vretenar, D. Shapes and α- and β-decays of superheavy nuclei. Nucl. Phys. A 944, 415–441 (2015).

    Article  ADS  Google Scholar 

  9. Myers, W. D. & Swiatecki, W. Nuclear masses and deformations. J. Nucl. Phys. 81, 1–60 (1966).

    Article  ADS  Google Scholar 

  10. Magierski, P. & Heenen, P.-H. Structure of the inner crust of neutron stars: crystal lattice or disordered phase? Phys. Rev. C. 65, 045804 (2002).

    Article  ADS  Google Scholar 

  11. Schuetrumpf, B., Nazarewicz, W. & Reinhard, P.-G. Central depression in nucleonic densities: trend analysis in the nuclear density functional theory approach. Phys. Rev. C. 96, 024306 (2017).

    Article  ADS  Google Scholar 

  12. Ćwiok, S., Heenen, P. H. & Nazarewicz, W. Shape coexistence and triaxiality in the superheavy nuclei. Nature 433, 705–709 (2005).

    Article  ADS  Google Scholar 

  13. Düllmann, C. E. & Block, M. Island of heavyweights. Sci. Am. 318, 46–53 (2018).

    Article  Google Scholar 

  14. Nilsson, S. G. et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1–66 (1969).

    Article  ADS  Google Scholar 

  15. Bender, M., Nazarewicz, W. & Reinhard, P.-G. Shell stabilization of super- and hyperheavy nuclei without magic gaps. Phys. Lett. B 515, 42–48 (2001).

    Article  ADS  Google Scholar 

  16. Agbemava, S. E., Afanasjev, A. V., Nakatsukasa, T. & Ring, P. Covariant density functional theory: reexamining the structure of superheavy nuclei. Phys. Rev. C. 92, 054310 (2015).

    Article  ADS  Google Scholar 

  17. Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P. & Nazarewicz, W. Electron and nucleon localization functions of Oganesson: approaching the Thomas-Fermi limit. Phys. Rev. Lett. 120, 053001 (2018).

    Article  ADS  Google Scholar 

  18. Möller, P., & Nix, J. R. Stability of heavy and superheavy elements. J. Phys. G 20, 1681–1747 (1994).

    Article  ADS  Google Scholar 

  19. Tolokonnikov, S. V., Borzov, I. N., Kortelainen, M., Lutostansky, Y. S. & Saperstein, E. E. Alpha-decay energies of superheavy nuclei for the Fayans functional. Eur. Phys. J. A 53, 33 (2017).

    Article  ADS  Google Scholar 

  20. Baran, A. et al. Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100. Nucl. Phys. A 944, 442–470 (2015).

    Article  ADS  Google Scholar 

  21. Giuliani, S. A., Martnez-Pinedo, G. & Robledo, L. M. Fission properties of superheavy nuclei for r-process calculations. Phys. Rev. C. 97, 034323 (2018).

    Article  ADS  Google Scholar 

  22. Poenaru, D. N., Gherghescu, R. A., Greiner, W. & Shakib, N. S. How Rare Is Cluster Decay of Superheavy Nuclei? 131–140 (Springer, Cham, 2015).

  23. Warda, M. & Robledo, L. M. Microscopic description of cluster radioactivity in actinide nuclei. Phys. Rev. C. 84, 044608 (2011).

    Article  ADS  Google Scholar 

  24. Schwerdtfeger, P., Pašteka, L. F., Punnett, A. & Bowman, P. O. Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551–577 (2015).

    Article  ADS  Google Scholar 

  25. Schwerdtfeger, P. Toward an accurate description of solid-state properties of superheavy elements: A case study for the element Og (Z = 118). EPJ Web Conf. 131, 07004 (2016).

    Article  Google Scholar 

  26. Eliav, E., Fritzsche, S., & Kaldor, U. Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518–550 (2015).

    Article  ADS  Google Scholar 

  27. Pyykkö, P. A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161–168 (2011).

    Article  Google Scholar 

  28. Wapstra, A. H. et al. Criteria that must be satisfied for the discovery of a new chemical element to be recognized. Pure Appl. Chem. 63, 879–886 (1991).

    Article  Google Scholar 

  29. Korschinek, G., & Kutschera, W. Mass spectrometric searches for superheavy elements in terrestrial matter. Nucl. Phys. A 944, 190–203 (2015).

    Article  ADS  Google Scholar 

  30. Ter-Akopian, G., & Dmitriev, S. Searches for superheavy elements in nature: cosmic-ray nuclei; spontaneous fission. Nucl. Phys. A 944, 177–189 (2015).

    Article  ADS  Google Scholar 

  31. Goriely, S. & Pinedo, G. M. The production of transuranium elements by the r-process nucleosynthesis. Nucl. Phys. A 944, 158–176 (2015).

    Article  ADS  Google Scholar 

  32. Ackermann, D. & Theisen, C. Nuclear structure features of very heavy and superheavy nuclei—tracing quantum mechanics towards the ‘island of stability’. Phys. Scr. 92, 083002 (2017).

    Article  ADS  Google Scholar 

  33. Zagrebaev, V., & Greiner, W. Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257–307 (2015).

    Article  ADS  Google Scholar 

  34. Itkis, M., Vardaci, E., Itkis, I., Knyazheva, G., & Kozulin, E. Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204–237 (2015).

    Article  ADS  Google Scholar 

  35. Loveland, W. Synthesis of transactinide nuclei using radioactive beams. Phys. Rev. C. 76, 014612 (2007).

    Article  ADS  Google Scholar 

  36. Lee, M. S. Elemental haiku. Science 357, 461–463 (2017).

    Article  ADS  Google Scholar 

  37. Dmitriev, S., Itkis, M. & Oganessian, Y. Status and perspectives of the Dubna superheavy element factory. EPJ Web Conf. 131, 08001 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Discussions with Y. Oganessian and P. Schwerdtfeger, and useful comments from D. Lee are gratefully appreciated. This work was supported by the US Department of Energy under award numbers DOE-DE-NA0002847 (NNSA, the Stewardship Science Academic Alliances programme), DE-SC0013365 (Office of Science) and DE-SC0018083 (Office of Science, NUCLEI SciDAC-4 collaboration).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Nazarewicz.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarewicz, W. The limits of nuclear mass and charge. Nature Phys 14, 537–541 (2018). https://doi.org/10.1038/s41567-018-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0163-3

  • Springer Nature Limited

This article is cited by

Navigation