Skip to main content
Log in

Effect of light intensity on photophysiology and growth dynamics of crustose coralline algae (CCA): implications for the loss of canopy-forming algae

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The disappearance of canopy-forming algae in coastal habitats exposes crustose coralline algae (CCA) to varying light conditions during the transition from foliose macroalgal habitats to barren ground by physical, chemical, or biological interaction. We hypothesized that the sudden increase in light intensity, resulting from the absence of canopy-forming algae, leads to photodamage in CCA related to inhibition of growth. To test this, a 4-week indoor incubation experiment was conducted under different light intensities (20-, 60-, 120-, and 250-μmol photons m−2 s−1). Results revealed that CCA can acclimate to limited light environments, with the efficiency of PSII significantly reduced at higher light levels. Photoprotective mechanisms were activated under persistent stress, leading to a reduction in encrusting area and CCA bleaching. This suggests that CCA coexist with canopy-forming algae in environments with sufficient light exposure, benefiting from the shade provided. However, if directly exposed to light due to the disappearance of canopy-forming algae, CCA faces extreme light stress and potential disappearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data in this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Anthony, K. R. N., J. Kleypas & J.-P. Gattuso, 2011. Coral reefs modify the carbon chemistry of their seawater – implications for the impacts of ocean acidification. Global Change Biology 17: 3655–3666.

    Article  Google Scholar 

  • Anthony, K. R. N., G. Diaz-Pulido, N. Verlinden, B. Tilbrook & A. J. Andersson, 2013. Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences 10: 4897–4909.

    Article  Google Scholar 

  • Arafeh-Dalmau, N., G. Montaño-Moctezuma, J. A. Martínez, R. Beas-Luna, D. S. Schoeman & G. Torres-Moye, 2019. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Frontiers in Marine Science 6: 499.

    Article  Google Scholar 

  • Bessell-Browne, P., A. P. Negri, R. Fisher, P. L. Clode & R. Jones, 2017. Impacts of light limitation on corals and crustose coralline algae. Scientific Reports 7: 11553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bews, E., L. Booher, T. Polizzi, C. Long, J.-H. Kim & M. S. Edwards, 2021. Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: implications for bioremediation of coastal watersheds. Marine Pollution Bulletin 166: 112199.

    Article  CAS  PubMed  Google Scholar 

  • Burdett, H. L., S. J. Hennige, F.T.-Y. Francis & N. A. Kamenos, 2012. The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Botanica Marina 55: 499–509.

    Article  CAS  Google Scholar 

  • Connell, S. D., 2003. The monopolization of understorey habitat by subtidal encrusting coralline algae: a test of the combined effects of canopy-mediated light and sedimentation. Marine Biology 142: 1065–1071.

    Article  Google Scholar 

  • Cyronak, T., A. J. Andersson, C. Langdon, R. Albright, N. R. Bates, K. Caldeira, R. Carlton, J. E. Corredor, R. B. Dunbar, I. Enochs, J. Erez, B. D. Eyre, J.-P. Gattuso, D. Gledhill, H. Kayanne, D. I. Kline, D. A. Koweek, C. Lantz, B. Lazar, D. Manzello, A. McMahon, M. Meléndez, H. N. Page, I. R. Santos, K. G. Schulz, E. Shaw, J. Silverman, A. Suzuki, L. Teneva, A. Watanabe & S. Yamamoto, 2018. Taking the metabolic pulse of the world’s coral reefs. PLoS ONE 13(1): e0190872. https://doi.org/10.1371/journal.pone.0190872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davison, I. R. & G. A. Reason, 1996. Stress tolerance in intertidal seaweeds. Journal of Phycology 32: 197–211.

    Article  Google Scholar 

  • Dean, A. J., R. S. Steneck, D. Tager & J. M. Pandolfi, 2015. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef. Coral Reefs 34: 581–594.

    Article  Google Scholar 

  • Dethier, M. N., 1994. The ecology of intertidal algal crusts: variation within a functional group. Journal of Experimental Marine Biology and Ecology 177: 37–71.

    Article  Google Scholar 

  • Diaz-Pulido, G., K. Anthony, D. I. Kline, S. Dove & O. Hoegh-Guldberg, 2012. Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology 48: 32–39.

    Article  CAS  PubMed  Google Scholar 

  • Dickson, A. G., 1993. The measurement of sea water pH. Marine Chemistry 44: 131–142.

    Article  CAS  Google Scholar 

  • Doney, S. C., M. Ruckelshaus, J. E. Duffy, J. P. Barry, F. Chan, C. A. English, H. M. Galindo, J. M. Grebmeier, A. B. Hoolowed, N. Knowlton, J. Polovina, N. N. Rabalais, W. J. Sydeman & L. D. Talley, 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4: 11–37.

    Article  PubMed  Google Scholar 

  • Donham, E. M., S. L. Hamilton, I. Aiello, N. N. Price & J. E. Smith, 2022. Consequences of warming and acidification for the temperature articulated coralline alga, Calliarthron tumberculosum (Florideophyceae, Rhodophyta). Journal of Phycology 58: 517–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, M. S., 1998. Effects of long-term kelp canopy exclusion on the abundance of the annual alga Desmarestia ligulata (Light F). Journal of Experimental Marine Biology and Ecology 228: 309–326.

    Article  Google Scholar 

  • Edwards, M. S. & S. D. Connell, 2012. Competition, a major factor structuring seaweed communities. In Wencke, C. & K. Bischof (eds), Seaweed Biology, Ecological Studies, Vol. 219. Springer, Berlin: 135–156.

    Chapter  Google Scholar 

  • Edwards, M., B. Konar, J.-H. Kim, S. Gabara, G. Sullaway, T. McHugh, M. Spector & S. Small, 2020. Marine deforestation leads to widespread loss of ecosystem function. PLoS ONE 15(3): e0226173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edyvean, R. G. J. & H. Ford, 1987. Growth rates of Lithophyllum incrustans (Corallinales, Rhodophyta) from South West Wales. British Phycological Journal 22: 139–146.

    Article  Google Scholar 

  • Estes, J. A., M. T. Tinker, T. M. Williams & D. F. Doak, 1998. Killer whale predation on sea otters linking coastal with oceanic ecosystems. Science 282: 473–476.

    Article  CAS  PubMed  Google Scholar 

  • Foster, M. S., 1975. Regulation of algal community development in Macrocystis pyrifera forest. Marine Biology 32: 331–342.

    Article  Google Scholar 

  • Genty, B., J.-M. Briantais & N. R. Baker, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Et Biophysica Acta General Subjects 990: 87–92.

    Article  CAS  Google Scholar 

  • Gerard, V. A., 1984. The light environment in a giant kelp forest: influence of Macrocystis pyrifera on spatial and temporal variability. Marine Biology 84: 189–195.

    Article  Google Scholar 

  • Hagen, N. T., 1995. Recurrent destructive grazing of successionally immature kelp forests by green sea urchins in Vestfjorden, Northern Norway. Marine Ecology Progress Series 123: 95–106.

    Article  Google Scholar 

  • Hudson, C. J., S. Agostini, S. Wada, J. M. Hall-Spencer, S. D. Connell & B. P. Harvey, 2023. Ocean acidification increases the impact of typhoons on algal communities. Science of the Total Environment 865: 161269.

    Article  CAS  PubMed  Google Scholar 

  • Irving, A. D., S. D. Connell & T. S. Elsdon, 2004. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. Journal of Experimental Marine Biology and Ecology 310: 1–12.

    Article  Google Scholar 

  • Irving, A. D., S. D. Connell, E. L. Johnston, A. J. Pile & B. M. Gillanders, 2005. The response of encrusting coralline algae to canopy loss: an independent test of predictions on an Antarctic coast. Marine Biology 147: 1075–1083.

    Article  Google Scholar 

  • Kang, R.-S., 2010. A review of destruction of seaweed habitats along the coast of the Korean Peninsula and its consequences. Bulletin of Japan Fisheries Research and Education Agency 32: 25–31.

    Google Scholar 

  • Kang, E. J., A.-R. Han, J.-H. Kim, I.-N. Kim, S. Lee, J.-O. Min, B.-R. Nam, Y.-J. Choi, M. S. Edwards, G. Diaz-Pulido & C. Kim, 2021a. Evaluating bloom potential of green-tide forming alga Ulva ohnoi under ocean acidification and warming. Science of the Total Environment 769: 144443.

    Article  CAS  PubMed  Google Scholar 

  • Kang, E. J., S. Lee, J. Kang, H. Moon, I.-N. Kim & J.-H. Kim, 2021b. Performance of a potentially invasive species of ornamental seaweed Caulerpa sertularioides in acidifying and warming oceans. Journal of Marine Science and Engineering 9: 1368.

    Article  Google Scholar 

  • Kendrick, G. A., 1991. Recruitment of coralline crusts and filamentous turf algae in the Galapagos Archipelago: effect of simulated scour, erosion and accretion. Journal of Experimental Marine Biology and Ecology 147: 47–63.

    Article  Google Scholar 

  • Kim, J.-H., E. J. Kang, K. Kim, H. J. Jeong, K. Lee, M. S. Edwards, M. G. Park, B.-G. Lee & K. Y. Kim, 2015. Evaluation of carbon flux in vegetative bay based on ecosystem production and CO2 exchange driven by coastal autotrophs. Algae 30: 121–137.

    CAS  Google Scholar 

  • Kim, J.-H., N. Kim, H. Moon, S. Lee, S. Y. Jeong, G. Diaz-Pulido, M. S. Edwards, J.-H. Kang, E. J. Kang, H.-J. Oh, J.-D. Hwang & I.-N. Kim, 2020. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Marine Pollution Bulletin 157: 111324.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.-H., M. S. Edwards & D. Steller, 2021. Variation in photosynthetic performance relative to thallus microhabitat heterogeneity in Lithothamnion australe (Rhodophyta, Corallinales) rhodolith. Journal of Phycology 57: 234–244.

    Article  PubMed  Google Scholar 

  • Kim, J.-M., K. Lee, I.-S. Han, M. Kim, J.-H. Kim, T.-H. Kim, H. K. Kim, B. H. Jeon & K. Shin, 2022. Factors governing seawater carbonate dynamics in a macroalgal habitat. Frontiers in Marine Science 9: 963193.

    Article  Google Scholar 

  • Kim, J.-H., C.-W. Kwak, E. J. Kang, C. Kim, H. Moon, H. Li, H. W. Lee, H. Kim, I.-N. Kim, M. Kim, Y. K. Lee, J. W. Jin, J. C. Oh & J. W. Kang, 2023. Assessing photosynthetic uptake of total inorganic carbon in an Ecklonia cava dominated seaweed artificial reef: population- and community-level metabolisms. Journal of Applied Phycology. https://doi.org/10.1007/s10811-023-03118-5.

    Article  Google Scholar 

  • Leukart, P., 1994. Field and laboratory studies on depth dependence, seasonality and light requirement of growth in three species of crustose coralline algae (Corallinales, Rhodophyta). Phycologia 33: 281–290.

    Article  Google Scholar 

  • Li, H., H. Moon, E. J. Kang, J.-M. Kim, M. Kim, K. Lee, C.-W. Kwak, H. Kim, I.-N. Kim, K. Y. Park, Y. K. Lee, J. W. Jin, M. S. Edwards & J.-H. Kim, 2022. The diel and seasonal heterogeneity of carbonate chemistry and dissolved oxygen in three types of macroalgal habitats. Frontiers in Marine Science 9: 857153.

    Article  Google Scholar 

  • Littler, M. M., 1972. The crustose Corallinaceae. Oceanography and Marine Biology 10: 311–347.

    Google Scholar 

  • Littler, M. M., D. S. Littler, S. M. Blair & J. N. Norris, 1985. Deepest known plant life discovered on an uncharted seamount. Science 227: 57–59.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S. & J.-P. Gattuso, 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology 15: 2089–2100.

    Article  Google Scholar 

  • Martin, S., A. Charnoz & J. P. Gattuso, 2013. Photosynthesis, respiration, and calcification in the Mediterranean crustose coralline alga Lithophyllum cabiochae (Corallinales, Rhodophyta). European Journal of Phycology 48: 163–172.

    Article  CAS  Google Scholar 

  • Miller, R., D. C. Reed & M. Brzezinski, 2009. Community structure and productivity of subtidal turf and foliose algal assemblages Marine Ecology Progress Series 388: 1–11.

    Article  CAS  Google Scholar 

  • Millero, F. J., J. Z. Zhang, K. Lee & M. Campell, 1993. Titration alkalinity of seawater. Marine Chemistry 44: 153–165.

    Article  CAS  Google Scholar 

  • Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

    Google Scholar 

  • Ramus, J., S. I. Beale & D. Mauzerall, 1976. Correlation of changes in pigment content with photosynthetic capacity of seaweeds as a function of water depth. Marine Biology 37: 231–238.

    Article  CAS  Google Scholar 

  • Reed, D. C. & M. S. Foster, 1984. The effects of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology 65: 937–948.

    Article  Google Scholar 

  • Rodríguez-Prieto, C., 2016. Light and temperature requirements for survival, growth and reproduction of the crustose coralline Lithophyllum stictaeforme from the Mediterranean Sea. Botanica Marina 59: 95–104.

    Article  Google Scholar 

  • Spencer-Davies, P., 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology 101: 389–395.

    Article  Google Scholar 

  • Steneck, R. S., 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annual Review of Ecology, Evolution, and Systematics 17: 273–303.

    Article  Google Scholar 

  • Strain, E. M., R. J. Thomson, F. Micheli, F. P. Mancuso & L. Airoldi, 2014. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Global Change Biology 20: 3300–3312.

    Article  PubMed  Google Scholar 

  • Tâmega, F. T. S. & M. A. O. Figueiredo, 2019. Colonization, growth and productivity of crustose coralline algae in sunlit reefs in the Atlantic southernmost coral reef. Front. Mar. Sci. 6:81. https://doi.org/10.3389/fmars.2019.00081

    Article  Google Scholar 

  • Villegas, M., J. Laudien, W. Sielfeld & W. Arntz, 2018. Effect of foresting barren ground with Macrocystis pyrifera (Linnaeus) C. Agardh on the occurrence of coastal fishes off northern Chile. Journal of Applied Phycology 31: 2145–2157.

    Article  Google Scholar 

Download references

Acknowledgements

We thank YJY, YJS, and HYP for field sampling and technical support.

Funding

This research was supported by the following Research Grants: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean Government (MIST) (NRF-2021R1A2C4002298 to J-HK and NRF-2022R1C1C2008739 to EJK). Also, this work was partially funded by the project titled “Techniques development for management and evaluation of biofouling on ship hulls” (No. RS-2021-KS211530) to J-HK, “Development of marine aquaculture within offshore wind farms” (No. RS-2022-KS221679) to YSK through the Ministry of Oceans and Fisheries, Korea (MOF), and Korea Institute of Ocean Science and Technology (Grant Number PEA 02025) to J-HK and HK.

Author information

Authors and Affiliations

Authors

Contributions

EJK and YRK analyzed data and wrote the draft manuscript. HWL and HK conducted the sample collection, analysis, and data discussion. J-HK and YSK supervised the project and reviewed the draft manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Young Sik Kim or Ju-Hyoung Kim.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, E.J., Kim, Y.R., Lee, H.W. et al. Effect of light intensity on photophysiology and growth dynamics of crustose coralline algae (CCA): implications for the loss of canopy-forming algae. Hydrobiologia (2024). https://doi.org/10.1007/s10750-024-05553-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-024-05553-y

Keywords

Navigation