Skip to main content
Log in

What do we know about zooplankton occurrence and distribution in Neotropical streams? A systematic review of published studies in Brazil

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Studies on zooplankton in lakes, ponds, and rivers have always received more attention, while zooplankton from streams remains understudied worldwide. Therefore, the role of zooplankton in neotropical stream functioning is still poorly understood. In order to remedy this situation, we aimed to answer the following questions: (1) How many papers have been published on the zooplankton from Brazilian streams? (2) In which hydrographic regions were these studies conducted? (3) Are there specific patterns of zooplankton species occurrence in neotropical streams? (4) What are the main types of studies and what are the main environmental factors influencing zooplankton in streams? In order to answer these questions, we performed a systematic review of indexed scientific papers. We indeed observed a paucity of studies on zooplankton in Brazilian streams. But despite the low number of studies (24), many species (276 taxa) were reported from seven Brazilian hydrographic regions. The species composition showed great variability within the hydrographic regions and fourteen environmental variables (physical, chemical, and spatial), which can represent environmental filters and influence dispersion processes, were related to zooplankton occurrences. These bibliographic data helped to clarify patterns in species composition and community structure of zooplankton in these streams. More studies are needed to further investigate the role of zooplankton in neotropical streams, which can help to develop conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Aggio, C. E. G., F. R. Oliveira, M. Progênio, J. R. Bello, F. M. Lansac-Tôha & L. F. M. Velho, 2022. The zooplankton of tropical streams: is it determinism or stochasticity that drives the spatial and temporal patterns in community structure? Community Ecology 23: 219–229.

    Article  Google Scholar 

  • Allan, J. D., 1976. Life history patterns in zooplankton. American Naturalist 110: 165–180.

    Article  Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream ecology: structure and function of running waters, Springer, Dordrecht:

    Book  Google Scholar 

  • Amaral, D. C., F. F. Bomfim & F. A. Lansac-Tôha, 2022. Environmental heterogeneity drives the distribution of copepods (Crustacea: Copepoda) in the Amazon, Araguaia, Pantanal, and Upper Paraná floodplains. Anais da Academia Brasileira de Ciências 94: e20191260.

    Article  Google Scholar 

  • Andrade, V. S., M. F. Gutierrez & A. M. Gagneten, 2022. Effect of rainfall runoff from agricultural areas and seasonal crop practices on zooplankton community in Pampean streams, Argentina. Environmental Science and Pollution Research 29: 41713–41724.

    Article  PubMed  Google Scholar 

  • Asner, G. P., W. Llactayo, R. Tupayachi & E. R. Luna, 2013. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proceedings of the National Academy of Sciences 110: 18454–18459.

    Article  CAS  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Besemer, K., 2015. Biodiversity, community structure and function of biofilms in stream ecosystems. Research in Microbiology 166: 774–781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bomfim, F. F., S. Deosti, N. Louback-Franco, R. L. M. Sousa & T. S. Michelan, 2023a. How are zooplankton’s functional guilds influenced by land use in Amazon streams? PLoS ONE 18: 1–13.

    Article  Google Scholar 

  • Bomfim, F. F., A. L. B. Fares, D. G. L. Melo, E. Vieira & T. S. Michelan, 2023b. Land use increases macrophytes beta diversity in Amazon streams by favoring amphibious life forms species. Community Ecology 24: 159–170.

    Article  Google Scholar 

  • Bomfim, F. F., M. G. G. Melão, R. C. Gebara & F. A. Lansac-Tôha, 2022. Warming alters the metabolic rates and life-history parameters of Ceriodaphnia silvestrii (Cladocera). Anais da Academia Brasileira de Ciências 94: e20200604.

    Article  Google Scholar 

  • Bomfim, F. F., H. Vanvelk, L. Pinheiro-Silva, K. I. Brans, F. A. Lansac-Tôha & L. De Meester, 2023c. The effect of temperature and predation on performance in monoculture and in competition in three Daphniidae differing in body size. Limnology and Oceanography 9999: 1–13.

    Google Scholar 

  • Brasil, L. S., A. Luiza-Andrade, T. B. Kisaka, P. Ilha & F. D. R. Sousa, 2019. Cladocera distribution along an environmental gradient on the cerrado-amazon ecotone: a preliminary study. Acta Limnologica Brasiliensia 31: e29.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Cantanhêde, L. G. & L. F. de Assis Montag, 2023. Effects of deforestation on environmental heterogeneity and its role in the distribution of fish species and functional groups in Amazonian streams. Hydrobiologia 1: 1–15.

    Google Scholar 

  • Castello, L. & M. N. Macedo, 2016. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.

    Article  PubMed  Google Scholar 

  • Castilho-Noll, M. S. M., G. Perbiche-Neves, N. G. dos Santos, L. T. F. Schwind, F. M. Lansac-Tôha, A. C. S. da Silva, B. R. de Meira, C. Y. Joko, C. S. de Morais-Júnior, et al., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 1: 1–10.

    Google Scholar 

  • Chambord, S., M. Tackx, E. Chauvet & G. Escolar, 2017. Two microcrustaceans affect microbial and macroinvertebrate-driven litter breakdown. Freshwater Biology 62: 530–543.

    Article  CAS  Google Scholar 

  • Couceiro, S., N. Hamada, B. R. Forsberg & C. Padovesi-Fonseca, 2010. Trophic structure of macroinvertebrates in Amazonian streams impacted by anthropogenic siltation. Austral Ecology 36: 628–637.

    Article  Google Scholar 

  • Cummins, R. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40: 69–89.

    Article  Google Scholar 

  • Czerniawski, R., 2013. Zooplankton community changes between forest and meadow sections in small headwater streams, NW Poland. Biologia (Poland) 68: 448–458.

    Google Scholar 

  • Diniz, L. P., et al., 2020. Distribution of planktonic microcrustaceans (Cladocera and copepoda) in lentic and lotic environments from the semiarid region in northeastern Brazil. Iheringia - Serie Zoologia 110: 1–12.

    Article  Google Scholar 

  • Doubek, J. P., K. L. Campbell, M. E. Lofton, R. P. McClure & C. C. Carey, 2019. Hypolimnetic hypoxia increases the biomass variability and compositional variability of crustacean zooplankton communities. Water (switzerland) 11: 1–21.

    Google Scholar 

  • Edegbene, A. O., Y. Abdullahi, F. C. Akamagwuna, E. Ogidiaka, E. Catherine Osimen & B. Odafe Omovoh, 2022. Are zooplankton useful indicators of ecological quality in Afrotropical ephemeral streams impacted by human activities? Environmental Monitoring and Assessment 194: 1–13.

    Article  Google Scholar 

  • Elmoor-Loureiro, L., 2023. Cladóceros do Brasil: Famílias Chydoridae e Eurycercidae. https://cladocera.wordpress.com.

  • Elmoor-Loureiro, L. M. A., F. D. R. Sousa, F. R. Oliveira, C. Y. Joko, G. Perbiche-Neves, A. C. S. da Silva, A. J. Silva, A. R. Ghidini, B. R. Meira, C. E. G. Aggio, C. S. Morais-Junior, et al., 2022. Towards a synthesis of the biodiversity of freshwater Protozoa, Rotifera, Cladocera, and Copepoda in Brazil. Limnologica 1: 1–8.

    Google Scholar 

  • Faria, A. P. J., R. Ligeiro, L. B. Calvão, X. Giam, M. A. Leibold & L. Juen, 2023. Land use types determine environmental heterogeneity and aquatic insect diversity in Amazonian streams. Hydrobiologia 1: 1–18.

    Google Scholar 

  • Finn, D. S., N. Bonada, C. Múrria & J. M. Hughes, 2011. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. Journal of the North American Benthological Society 30: 963–980.

    Article  Google Scholar 

  • Fryer, G., 1995. Phylogeny and adaptive radiation within the Anomopoda: a preliminary exploration. Hydrobiologia 307: 57–68.

    Article  Google Scholar 

  • Gardner, T. A., J. Ferreira, J. Barlow, A. C. Lees, L. Parry, I. C. Guimarães Vieira, E. Berenguer, R. Abramovay, A. Aleixo, C. Andretti, L. E. O. C. Aragão, I. Araújo, W. S. de Ávila, R. D. Bardgett, M. Batistella, R. A. Begotti, T. Beldini, D. E. de Blas, R. F. Braga, D. de Lima Braga, J. G. de Brito, P. B. de Camargo, F. C. dos Santos, V. C. de Oliveira, A. C. Nunes Cordeiro, T. M. Cardoso, D. R. de Carvalho, S. A. Castelani, J. C. Mário Chaul, C. E. Cerri, F. de Assis Costa, C. D. F. da Costa, E. Coudel, A. C. Coutinho, D. Cunha, Á. D’Antona, J. Dezincourt, K. Dias-Silva, M. Durigan, et al., 2013. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society b: Biological Sciences Royal Society of London 368: 20120166.

    Article  Google Scholar 

  • Gomes, A. C. A. M., L. F. Gomes, I. Roitman, H. R. Pereira, A. F. C. Junior, E. M. M. da Costa, M. L. C. da Silva, T. K. B. Jacobson, R. J. da Costa Ribeiro, R. J. de Miranda Filho, M. L. de Avila & L. C. G. Vieira, 2020a. Forest cover influences zooplanktonic communities in Amazonian streams. Aquatic Ecology 54: 1067–1078.

    Article  Google Scholar 

  • Gomes, L. F., J. C. Barbosa, H. de Oliveira Barbosa, M. C. Vieira & L. C. G. Vieira, 2020b. Environmental and spatial influences on stream zooplankton communities of the Brazilian Cerrado. Community Ecology 21: 25–31.

    Article  Google Scholar 

  • Gray, J. R., G. D. Gylsson, L. M. Turcios, & G. E. Schwarz, 2000. Comparability of Suspended-Sediment Concentration and Total Suspended Solids Data. Reston, VA: US.

  • Gutierrez, M. F., G. Mayora, M. Licursi, M. Michlig, M. R. Repetti & L. Negro, 2022. Zooplankton shifts from headwater to lowland streams: insights into the role of water quality to assist the protection and restoration of agricultural waterways. Ecohydrology 15: e2432.

    Article  Google Scholar 

  • Hauer, R. F. & G. A. Lamberti, 2017. Methods in stream ecology, Academic Press, Cambridge:

    Google Scholar 

  • Hebert, M.-P., B. E. Beisner & R. Maranger, 2016. A meta-analysis of zooplankton functional traits influencing ecosystem function A meta-analysis analysis of zooplankton functional traits influencing ecosystem function. Ecology 97: 1069–1080.

    Article  PubMed  Google Scholar 

  • Heino, J., A. S. Melo & L. M. Bini, 2015a. Reconceptualizing the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology 60: 223–235.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015b. Metacommunity organization, spatial extent and dispersal in aquatic systems: patterns, processes, and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Hill, M. J., J. Heino, I. Thornhill, D. B. Ryves & P. J. Wood, 2017. Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos 126: 1575–1585.

    Article  Google Scholar 

  • IBGE, 2023. Instituto Brasileiro de Geografia e Estatística (Brazilian Institute of Geography and Statistics). https://biblioteca.ibge.gov.br/biblioteca.

  • Johnson, R. K. & D. G. Angeler, 2014. Effects of agricultural land use on stream assemblages: taxon-specific responses of alpha and beta diversity. Ecological Indicators 45: 386–393.

    Article  CAS  Google Scholar 

  • José de Paggi, S. & J. C. Paggi, 2007. Zooplankton in The Middle Parana River : limnology of a subtropical wetland In Iriondo. In Paggi, J. C. & M. J. Parma (eds), Zooplankton in The Middle Parana River: limnology of a subtropical wetland Springer, Berlin: 229–245.

    Chapter  Google Scholar 

  • Karpowicz, M., J. Ejsmont-Karabin, J. Kozłowska, I. Feniova & A. R. Dzialowski, 2020. Zooplankton community responses to oxygen stress. Water (Switzerland) 12: 1–20.

    Google Scholar 

  • King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, T. E. Jordan, P. F. Kazyak & M. K. Hurd, 2005. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15: 137–153.

    Article  Google Scholar 

  • Koski, M., J. Boutorh & C. De La Rocha, 2017. Feeding on dispersed vs. aggregated particles: the effect of zooplankton feeding behavior on vertical flux. PLoS ONE 12: 1–18.

    Article  Google Scholar 

  • Koste, W., 1978. Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight. Monogononta, Gebrüder Borntraeger, Berlin:

    Google Scholar 

  • Lampert, W. & U. Sommer, 1997. Limnoecology: the ecology of lakes and streams, Oxford University Press, New York:

    Google Scholar 

  • Landa, G. G. & I. V. H. Colchete, 2020. Study of the distribution of the zooplanktonic community in the Park Engenheiro Felisberto Never, in Betim/MG. Acta Biologica Brasiliensia 3: 2596–2616.

    Google Scholar 

  • Lear, K. O., D. L. Morgan, J. M. Whitty, N. M. Whitney, E. E. Byrnes, S. J. Beatty & A. C. Gleiss, 2020. Divergent field metabolic rates highlight the challenges of increasing temperatures and energy limitations in aquatic ectotherms. Oecologia 193: 311–323.

    Article  PubMed  Google Scholar 

  • Malmqvist, B. & S. Rundle, 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29: 134–153.

    Article  Google Scholar 

  • McClain, M. E., R. Victoria & J. E. Richey, 2001. The biogeochemistry of the Amazon basin, Oxford University Press:

    Book  Google Scholar 

  • Montag, L. F. A., K. O. Winemiller, F. W. Keppeler, H. Leão, N. L. Benone, N. R. Torres, B. S. Prudente, T. O. Begot, L. M. Bower, D. E. Saenz, E. O. Lopez-Delgado, Y. Quintana, D. J. Hoeinghaus & L. Juen, 2019. Land cover, riparian zones, and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology Freshwater Fish 28: 317–329.

    Article  Google Scholar 

  • Moreira, R. A., O. Rocha, R. S. Santos, E. S. Dias, F. W. A. Moreira, et al., 2016. Composition, body-size structure, and biomass of zooplankton in a high elevation temporary pond (Minas Gerais, Brazil). Oecologia Australis 20: 81–93.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2019. Vegan, Community Ecology Package, 296.

  • Ono, E. R., P. S. Manoel, A. L. U. Melo & V. S. Uieda, 2020. Effects of riparian vegetation removal on the functional feeding group structure of benthic macroinvertebrate assemblages. Community Ecology 21: 145–157.

    Article  Google Scholar 

  • Ortaz, M., R. Martín & A. López-Ordaz, 2011. Spatial and temporal variation in diet composition of invertivore fishes in a tropical stream, Venezuela. Revista De Biologia Tropical 59: 1217–1231.

    PubMed  Google Scholar 

  • Padovesi-Fonseca, C., R. de Souza Rezende, D. F. da Costa & M. J. Martins-Silva, 2021. Spatial scales drive zooplankton diversity in savanna Cerrado streams. Community Ecology 22: 249–259.

    Article  Google Scholar 

  • Perbiche-Neves, G., D. Previattelli, M. R. Pie, A. Duran, E. Suárez-Morales, G. A. Boxshall, M. G. Nogueira & C. E. F. da Rocha, 2014. Historical biogeography of the neotropical Diaptomidae (Crustacea: Copepoda). Frontiers in Zoology 11: 1–8.

    Article  Google Scholar 

  • Perbiche-Neves, G. & M. Serafim-Júnior, 2007. Zooplankton in a stretch of Laranjinha River (Paranapanema River Basin), Parana State, Brazil. Estudos De Biologia 29: 257–268.

    Google Scholar 

  • Peres, C. K., A. F. Tonetto, M. V. Garey & C. C. Z. Branco, 2017. Canopy cover is the key factor for the occurrence and species richness of subtropical stream green algae (Chlorophyta). Aquatic Botany 137: 24–29.

    Article  Google Scholar 

  • Perlmutter, D. G. & J. L. Meyer, 1991. The impact of a stream-dwelling harpacticoid copepod upon detritally associated bacteria. Ecology 72: 2170–2180.

    Article  Google Scholar 

  • Phillips, E. C., 1995. Comparison of the zooplankton of a lake and stream in Northwest Arkansas. Journal of Freshwater Ecology 10: 337–341.

    Article  Google Scholar 

  • Picapedra, P. H. D. S., C. Fernandes & G. Baumgartner, 2019. Structure and ecological aspects of zooplankton (Testate amoebae, Rotifera, Cladocera, and Copepoda) in highland streams in southern Brazil. Acta Limnologica Brasiliensia 31: e5.

    Article  Google Scholar 

  • Picard, V. & N. Lair, 2003. Laboratory approach of the growth of rotifers sampled in Middle Loire (France) under turbulence. Journal De Recherche Oceanographique 28: 196–199.

    Google Scholar 

  • R, 2020. R Core Team: A language and environment for statistical computing. Vienna, Austria., https://www.r-project.org.

  • Ramos, E. A., C. S. de Morais-Junior, C. A. S. Rodrigues-Filho, J. I. Sánchez-Botero, M. Melo Júnior & J. L. C. Novaes, 2022. Influence of spatial and environmental factors on the structure of a zooplankton metacommunity in an intermittent river. Aquatic Ecology 56: 239–249.

    Article  Google Scholar 

  • Rezende, R. S., M. M. Petrucio & J. F. Gonçalves-Junior, 2014. The effects of spatial scale on the breakdown of leaves in a tropical watershed. PLoS ONE 9: e97072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro, B. I. O., et al., 2022. Environmental heterogeneity increases dissimilarity in zooplankton functional traits along a large Neotropical river. Hydrobiologia 849: 3135–3147.

    Article  CAS  Google Scholar 

  • Riis, T., M. Kelly Quinn, F. C. Aguiar, P. Manolaki, D. Bruno, M. D. Bejarano, N. Clerici, M. R. Fernandes, J. C. Franco, N. Pettit, A. Portela, O. Tammeorg, P. Tammeorg, P. Rodríguez-González & S. Dufour, 2020. Global overview of ecosystem services provided by riparian vegetation. BioScience 70: 501–514.

    Article  Google Scholar 

  • Robertson, A. L., J. Lancaster & A. G. Hildrew, 1995. Stream hydraulics and the distribution of microcrustaceans: a role for refugia? Freshwater Biology 33: 469–484.

    Article  Google Scholar 

  • Ruhl, N., D. Ruggiero, S. Iuliucci, M. Grove & C. Richmond, 2023. Predicting the density of zooplankton subsidy to a stream with multiple impoundments using water quality parameters. Aquatic Sciences 85: 1–12.

    Article  Google Scholar 

  • Schmid-Araya, J. M., A. G. Hildrew, A. Robertson, P. E. Schmid & J. Winterbottom, 2002. The importance of meiofauna in food webs: evidence from an acid stream. Ecology Ecological Society of America 83: 1271–1285.

    Google Scholar 

  • Schmid-Araya, J. M. & P. E. Schmid, 2000. Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwater Biology 44: 149–163.

    Article  Google Scholar 

  • Schram, M. D., A. V. Brown & D. C. Jackson, 1990. Diel and seasonal drift of zooplankton in a headwater stream. The American Midland Naturalist 123: 135–143.

    Article  Google Scholar 

  • Silva, W. M. & G. Perbiche-Neves, 2017. Trends in freshwater microcrustaceans studies in Brazil between 1990 and 2014. Brazilian Journal of Biology 77: 527–534.

    Article  CAS  Google Scholar 

  • Simões, N. R., S. L. Sonoda & S. M. M. S. Ribeiro, 2008. Spatial and seasonal variation of microcrustaceans (Cladocera and Copepoda) in intermittent rivers in the Jequiezinho River Hydrographic Basin, in the Neotropical semiarid. Acta Limnologica Brasiliensia 20: 197–204.

    Google Scholar 

  • Šorf, M., T. A. Davidson, S. Brucet, R. F. Menezes, M. Søndergaard, T. L. Lauridsen, F. Landkildehus, L. Liboriussen & E. Jeppesen, 2015. Zooplankton response to climate warming: a mesocosm experiment at contrasting temperatures and nutrient levels. Hydrobiologia 742: 185–203.

    Article  Google Scholar 

  • Sousa, F. D., L. Elmoor-Loureiro, et al., 2009. A contribution to the fauna of Cladocera (Branchiopoda) from Ceará state, Brazil. Nauplius 17: 101–105.

    Google Scholar 

  • Urban, M. C., D. K. Skelly, D. Burchsted, W. Price & S. Lowry, 2006. Stream communities across a rural–urban landscape gradient. Diversity and Distributions 12: 337–350.

    Article  Google Scholar 

  • Walks, D. J., 2007. Persistence of plankton in flowing water. Canadian Journal of Fisheries and Aquatic Sciences 29: 1693–1702.

    Article  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Reviews 41: 115–139.

    Article  CAS  Google Scholar 

  • Weber, S. & W. Traunspurger, 2014. Top-down control of a meiobenthic community by two juvenile freshwater fish species. Aquatic Ecology 48: 465–480.

    Article  CAS  Google Scholar 

  • Wickham, H., W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, H. Yutani, & RStudio, 2019. create elegant data visualisations using the grammar of graphics (ggplot2 ), 227.

  • Wirtz, K. W., 2012. Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Marine Ecology Progress Series 445: 1–12.

    Article  Google Scholar 

  • Yeakley, A. J., D. Ervin, H. Chang, E. F. Granek, V. Dujon, V. Shandas & D. Brown, 2016. Ecosystem services of streams and rivers. In Gilvear, D. J., M. T. Greenwood, M. C. Thoms & P. J. Wood (eds), River science: research and applications for the 21st century Wiley, London: 335–352.

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was financed by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA) processes 2022/1437669 and the CNPq process 433125/2018-7. We also thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, Hydro through the Biodiversity Research Consortium Brazil-Norway (BRC) and Prêmio Para Mulheres na Ciência 2021—L'Oréal Brasil, UNESCO e ABC for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The study idea and conception were developed by Francieli F. Bomfim and Thaisa S. Michelan. A literature search and data analysis were performed by Francieli F. Bomfim. All the authors wrote the first draft of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Francieli F. Bomfim.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Handling editor: María Florencia Gutierrez

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bomfim, F.F., Bonecker, C.C., Lansac-Tôha, F.A. et al. What do we know about zooplankton occurrence and distribution in Neotropical streams? A systematic review of published studies in Brazil. Hydrobiologia 851, 2561–2572 (2024). https://doi.org/10.1007/s10750-024-05485-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-024-05485-7

Keywords

Navigation