Skip to main content

Advertisement

Log in

Meroplanktic phytoplankton play a crucial role in responding to peak discharge events in the middle lowland section of the Loire River (France)

  • MICROALGAL FUNCTIONAL TRAITS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Meteorological and hydrological forcings influence phytoplankton at very short-time scales. The effect of turbulence, dilution, light, and nutrients are highly dynamic. Yet, our knowledge of short-term phytoplankton dynamics associated with discharge disturbances and nutrient inputs remains elusive, especially in large rivers. Based on every three-day monitoring, we studied phytoplankton in the middle Loire River (France) and related to the daily variations in water discharge and the physical and chemical parameters. We focused on summer phytoplankton (2013 and 2014), where dissolved inorganic phosphorus concentration was potentially limiting growth. We identified eight discharge events, which increased suspended matter concentration and decreased chlorophyll-a concentration. The most significant environmental drivers of phytoplankton composition were discharge and water temperature, a sensitive proxy for meteorological forcing at short-time scale. The phytoplankton composition responded to changes in hydrology along with three distinct assemblage types, where even small water discharge increase induced a community response. Meroplanktic algae being able to withstand sedimentation and resuspension could take advantage of hydrological peaks, following the benthic retention hypothesis. Our results suggest that short-term dynamics are crucial to understanding community organization and functioning in large river plankton, with meroplankton playing a decisive role in maintaining phytoplankton diversity and ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data presented in this study will be available as Supplementary materials.

References

  • Abonyi, A., M. Leitao, A. M. Lançon & J. Padisák, 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France), Hydrobiologia, Phytoplankton responses to human impacts at different scales: https://doi.org/10.1007/s10750-012-1130-0.

    Book  Google Scholar 

  • Abonyi, A., M. Leitão, I. Stanković, G. Borics, G. Várbíró & J. Padisák, 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecological Indicators 46: 11–22. https://doi.org/10.1016/j.ecolind.2014.05.038.

    Article  Google Scholar 

  • Abonyi, A., Z. Horváth & R. Ptacnik, 2018a. Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshwater Biology 63: 178–186. https://doi.org/10.1111/fwb.13051.

    Article  CAS  Google Scholar 

  • Abonyi, A., É. Ács, A. Hidas, I. Grigorszky, G. Várbíró, G. Borics & K. T. Kiss, 2018b. Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biology 63: 456–472. https://doi.org/10.1111/fwb.13084.

    Article  Google Scholar 

  • Abonyi, A., J.-P. Descy, G. Borics & E. Smeti, 2021. From historical backgrounds towards the functional classification of river phytoplankton sensu Colin S. Reynolds: what future merits the approach may hold? Hydrobiologia 848: 131–142. https://doi.org/10.1007/s10750-020-04300-3.

    Article  CAS  Google Scholar 

  • Aminot, A. & Kérouel, R., 2004. Hydrologie des écosystèmes marins: paramètres et analyses. Editions Quae. Ed. Ifremer. 336 pp.

  • Assmy, P., V. Smetacek, M. Montresor, C. Klaas, J. Henjes, V. H. Strass, J. M. Arrieta, U. Bathmann, G. M. Berg, E. Breitbarth, B. Cisewski, L. Friedrichs, N. Fuchs, G. J. Herndl, S. Jansen, S. Krägefsky, M. Latasal, I. Peeken, R. Röttgers, R. Scharek, S. E. Schüller, S. Steigenberger, A. Webb & D. Wolf-Gladrow, 2013. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1309345110.

    Article  Google Scholar 

  • Barton, A. D., B. A. Ward, R. G. Williams & M. J. Follows, 2014. The impact of fine-scale turbulence on phytoplankton community structure. Limnology and Oceanography: Fluids and Environments 4: 34–49. https://doi.org/10.1215/21573689-2651533.

    Article  Google Scholar 

  • Bibi, R., H. Y. Kang, D. Kim, J. Jang, G. K. Kundu, Y. K. Kim & C.-K. Kang, 2020. Dominance of autochthonous phytoplankton-derived particulate organic matter in a low-turbidity temperate estuarine embayment, Gwangyang Bay. Korea. Frontiers in Marine Science 7: 580260. https://doi.org/10.3389/fmars.2020.580260.

    Article  ADS  Google Scholar 

  • Boltovskoy, D., I. Izaguirre & N. Correa, 1995. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312: 171–182.

    Article  Google Scholar 

  • Borics, G., G. Várbíró, I. Grigorszky, E. Krasznai, S. Szabó & K. T. Kiss, 2007. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Large Rivers, 17. Archiv Für Hydrobiologie Supplement 161: 465–486. https://doi.org/10.1127/lr/17/2007/466.

    Article  Google Scholar 

  • Bormans, M., P. W. Ford, L. Fabbro & G. Hancock, 2004. Onset and persistence of cyanobacterial blooms in a large impounded tropical river. Australia. Marine and Freshwater Research 55(1): 1–15. https://doi.org/10.1071/MF03045.

    Article  CAS  Google Scholar 

  • Botte, V., M. Ribera D’Alcalà & M. Montresor, 2013. Hydrodynamic interactions at low Reynolds number: an overlooked mechanism favouring diatom encounters. Journal of Plankton Research 35: 914–918. https://doi.org/10.1093/plankt/fbt033.

    Article  Google Scholar 

  • Bowes, M. J., M. Loewenthal, D. S. Read, M. G. Hutchins, C. Prudhomme, L. K. Armstrong, S. A. Harman, H. D. Wickham, E. Gozzard & L. Carvalho, 2016. Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data. Science of the Total Environment 569–570: 1489–1499. https://doi.org/10.1016/j.scitotenv.2016.06.239.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192. https://doi.org/10.4319/lo.1993.38.6.1179.

    Article  ADS  Google Scholar 

  • Cloern, J. E., 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34: 127–168. https://doi.org/10.1029/96RG00986.

    Article  CAS  ADS  Google Scholar 

  • Comité Européen de Normalisation, 2003. Water quality – Guidance standard for the routine sampling and pre-treatment of benthic diatoms from rivers. European Standard: EN 13946: 2003.

    Google Scholar 

  • Del Giorgio, P. A. & M. L. Pace, 2008. Relative independence of organic carbon transport and processing in a large temperate river: the Hudson River as both pipe and reactor. Limnology and Oceanography 53: 185–197. https://doi.org/10.4319/lo.2008.53.1.0185.

    Article  ADS  Google Scholar 

  • Descy, J.-P., 1993. Ecology of the phytoplankton of the River Moselle: effects of disturbances on community structure and diversity. Hydrobiologia 249: 111–116.

    Article  Google Scholar 

  • Descy, J.-P., K. Patrick, E. Everbecq, G. Verniers, P. Usseglio-Polatera, P. Gérard, L. Viroux, J. Beisel & J. Smitz, 2009. Continental atlantic rivers. Rivers of Europe. EAWAG/ETH, Switzerland, Elsevier, London:

    Google Scholar 

  • Descy, J.-P., M. Leitao, E. Everbecq, J. S. Smitz & J.-F. Deliege, 2012. Phytoplankton of the River Loire, France: a biodiversity and modelling study. Journal of Plankton Research 34: 120–135. https://doi.org/10.1093/plankt/fbr085.

    Article  Google Scholar 

  • Descy, J.-P., C. S. Reynolds & J. Padisák, 2013. Phytoplankton in turbid environments: rivers and shallow lakes. Springer. https://doi.org/10.1007/978-94-017-2670-2.

    Article  Google Scholar 

  • Dillon, P. J. & F. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes 1,2. Limnology and Oceanography 19: 767–773. https://doi.org/10.4319/lo.1974.19.5.0767.

    Article  CAS  ADS  Google Scholar 

  • Dubelaar, G. B. J., P. J. F. Geerders & R. R. Jonker, 2004. High frequency monitoring reveals phytoplankton dynamics. Journal of Environmental Monitoring 6: 946–952. https://doi.org/10.1039/B409350J.

    Article  CAS  PubMed  Google Scholar 

  • Duleba, M., L. Ector, Z. Horváth, K. T. Kiss, L. F. Molnár, Z. Pohner, Z. Szilagyi, B. Toth, C. F. Vad, G. Várbíró & É. Ács, 2014. Biogeography and phylogenetic position of a warm-stenotherm centric diatom, Skeletonema potamos (CI Weber) Hasle and its long-term dynamics in the River Danube. Protist 165: 715–729. https://doi.org/10.1016/j.protis.2014.08.001.

    Article  PubMed  Google Scholar 

  • Eppley, R. W., F. M. H. Reid & J. D. H. Strickland, 1970. The Ecology of the Plankton Off La Jolla, California, In the period April through September, 1967, Part III, Estimates of Phytoplankton Crop Size, Growth Rate, And Primary Production.

  • Ettl, H., J. Gerloff & H. Hegnig, 1978. Xanthophyceae, Vol. 1. Gustav Fischer Verlag, Stuttgart:, 530.

    Google Scholar 

  • Ettl, H., J. Gerloff & H. Hegnig, 1985. Chrysophyceae und Haptophyceae, Gustav Fischer, Stuttgart:, 515.

    Google Scholar 

  • Floury, M., C. Delattre, S. J. Ormerod & Y. Souchon, 2012. Global versus local change effects on a large European river. Science of the Total Environment 441: 220–229. https://doi.org/10.1016/j.scitotenv.2012.09.051.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fott, B., 1968. Cryptophyceae, Chloromonadophyceae, Dinophyceae, vol 3. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, 322 pp.

  • Frau, D., F. R. Molina & G. Mayora, 2016. Feeding selectivity of the invasive mussel Limnoperna fortunei (Dunker, 1857) on a natural phytoplankton assemblage: what really matters? Limnology 17: 47–57. https://doi.org/10.1007/s10201-015-0459-2.

    Article  CAS  Google Scholar 

  • Geitler, L., 1930–1932. Cyanophyceae von Europa. Koeltz Scientific Books, Koenigstein, 1196 pp.

  • Gosselain, V., J.-P. Descy & E. Everbecq, 1994. The phytoplankton community of the River Meuse, Belgium: seasonal dynamics (year 1992) and the possible incidence of zooplankton grazing. Hydrobiologia 289: 179–191.

    Article  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Weinheim:

    Google Scholar 

  • Gu, R. R. & Y. Li, 2002. River temperature sensitivity to hydraulic and meteorological parameters. Journal of Environmental Management 66: 43–56. https://doi.org/10.1006/jema.2002.0565.

    Article  PubMed  Google Scholar 

  • Hiltunen, T., J. Laakso & V. Kaitala, 2006. Interactions between environmental variability and immigration rate control patterns of species diversity. Ecological Modelling 194: 125–131. https://doi.org/10.1016/j.ecolmodel.2005.10.010.

    Article  Google Scholar 

  • Huber-Pestalozzi, G., 1955. Euglenophyceen, vol 4. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, 606 pp.

  • Istvánovics, V., M. Honti, L. Vörös & Z. Kozma, 2010. Phytoplankton dynamics in relation to connectivity, flow dynamics and resource availability—the case of a large, lowland river, the Hungarian Tisza. Hydrobiologia 637: 121–141. https://doi.org/10.1007/s10750-009-9991-6.

    Article  CAS  Google Scholar 

  • Istvànovics, V. & M. Honti, 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnology and Oceanography 56: 1439–1452. https://doi.org/10.4319/lo.2011.56.4.1439.

    Article  ADS  Google Scholar 

  • John, D. M., B. A. Whitton & A. J. Brook, 2002. The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae, University Press, Cambridge.:, 878.

    Google Scholar 

  • Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology. BioScience 45: 134–141. https://doi.org/10.2307/1312552.

    Article  Google Scholar 

  • Kelly, M., 2000. Identification of common benthic diatoms in rivers. Field Studies Council 9: 118.

    Google Scholar 

  • Kiss, K. T., É. Ács & A. Kovács, 1994. Ecological observations on Skeletonema potamos (Weber) Hasle in the River Danube, near Budapest (1991–92, daily investigations). In Descy, J.-P., C. S. Reynolds & J. Padisák (eds), Phytoplankton in turbid environments: rivers and shallow lakes. Springer, Dordrecht.

    Google Scholar 

  • Kiss, K. T., A. Schmidt & É. Ács, 1996. Sampling strategies for phytoplankton investigations in a large river (River Danube, Hungary). STUDIA Studentenförderungs GmbH.

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota, Chroococcales, Vol. 1. Gustav Fischer, Stuttgart:, 548.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota. Oscillatoriales, Vol. 2. Gustav Fischer, Stuttgart:, 759.

    Google Scholar 

  • Komárek, J. & B. Fott, 1983. Chlorophyceae, vol 7, Chlorococcales. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, 1044 pp.

  • Krammer, K., 2002. Cymbella. In Lange-Bertalot, H. (ed), Diatoms of Europe A.R.G. Gantner Verlag K. G, Königstein: 586.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1. Teil: Naviculaceae, Gustav Fischer, Stuttgart:

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae. Surirellaceae, Gustav Fischer, Stuttgart:

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gustav Fischer, Stuttgart:

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Stuttgart.

  • Kruk, C., M. Devercelli & V. L. Huszar, 2021. Reynolds Functional Groups: a trait-based pathway from patterns to predictions. Hydrobiologia 848: 113–129. https://doi.org/10.1007/s10750-020-04340-9.

    Article  Google Scholar 

  • Lair, N. & P. Reyes-Marchant, 1997. The potamoplankton of the Middle Loire and the role of the’moving littoral ‘in downstream transfer of algae and rotifers. Hydrobiologia 356: 33–52.

    Article  CAS  Google Scholar 

  • Lalot, E., F. Curie, V. Wawrzyniak, F. Baratelli, S. Schomburgk, N. Flipo, H. Piegay & F. Moatar, 2015. Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging. Hydrology and Earth System Sciences 19: 4479–4492. https://doi.org/10.5194/hess-19-4479-2015.

    Article  ADS  Google Scholar 

  • Lange-Bertalot, H., 2001. Navicula sensu stricto: 10 genera separated from Navicula sensu lato Frustulia. In Lange-Bertalot, H. (ed), Diatoms of Europe, Vol. 2. A. R. G. Gantner Verlag K. G, Königstein: 526.

    Google Scholar 

  • Latapie, A., B. Camenen, S. Rodrigues, A. Paquier, J. P. Bouchard & F. Moatar, 2014. Assessing channel response of a long river influenced by human disturbance. Catena 121: 1–12. https://doi.org/10.1016/j.catena.2014.04.017.

    Article  Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24. https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2.

    Article  Google Scholar 

  • Legendre, P. & E. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280. https://doi.org/10.1007/s004420100716.

    Article  PubMed  ADS  Google Scholar 

  • Lewis, W. M., Jr., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. The Journal of Ecology. https://doi.org/10.2307/2259300.

    Article  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639. https://doi.org/10.1146/annurev.ecolsys.39.110707.173.

    Article  Google Scholar 

  • Lohrenz, S. E., C. L. Carroll, A. D. Weidemann & M. Tuel, 2003. Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf. Continental Shelf Research 23: 1447–1464. https://doi.org/10.1016/S0278-4343(03)00131-6.

    Article  ADS  Google Scholar 

  • Loreau, M. & N. Mouquet, 1999. Immigration and the maintenance of local species diversity. The American Naturalist 154: 427–440. https://doi.org/10.1086/303252.

    Article  PubMed  Google Scholar 

  • Lund, J. W. G. & J. F. Talling, 1957. Botanical limnological methods with special reference to the algae. The Botanical Review 23: 489–583.

    Article  Google Scholar 

  • Lürling, M., 2021. Grazing resistance in phytoplankton. Hydrobiologia 848: 237–249. https://doi.org/10.1007/s10750-020-04370-3.

    Article  Google Scholar 

  • Minaudo, C., M. Meybeck, F. Moatar, N. Gassama & F. Curie, 2015. Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012). Biogeosciences 12: 2549–2563. https://doi.org/10.5194/bg-12-2549-2015.

    Article  ADS  Google Scholar 

  • Minaudo, C., F. Curie, Y. Jullian, N. Gassama & F. Moatar, 2018. QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks. Biogeosciences 15: 2251–2269. https://doi.org/10.5194/bg-15-2251-2018.

    Article  CAS  ADS  Google Scholar 

  • Minaudo, C., A. Abonyi, M. Leitão, A. M. Lançon, M. Floury, J.-P. Descy & F. Moatar, 2021. Long-term impacts of nutrient control, climate change, and invasive clams on phytoplankton and cyanobacteria biomass in a large temperate river. Science of the Total Environment 756: 144074. https://doi.org/10.1016/j.scitotenv.2020.144074.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Moatar, F. & M. Meybeck, 2005. Compared performances of different algorithms for estimating annual nutrient loads discharged by the eutrophic River Loire. Hydrological Processes 19: 429–444. https://doi.org/10.1002/hyp.5541.

    Article  CAS  ADS  Google Scholar 

  • Moatar, F., J.-P. Descy, S. Rodrigues, Y. Souchon, M. Floury, C. Grosbois, C. Minaudo, M. Leitao, K. M. Wantzen & F. Bertrand, 2022. The Loire River basin Rivers of Europe. In Tockner, K., C. Zarfl & C. Robinson (eds), Rivers of Europe. Elsevier, Amsterdam.

    Google Scholar 

  • Naeem, S., 2008. Species redundancy and ecosystem reliability. Conservation Biology 12: 39–45. https://doi.org/10.1111/j.1523-1739.1998.96379.x.

    Article  Google Scholar 

  • Naselli-Flores, L., T. Zohary & J. Padisák, 2021. Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds. Hydrobiologia 848: 7–30. https://doi.org/10.1007/s10750-020-04217-x.

    Article  Google Scholar 

  • Nock, C. A., R. J. Vogt & B. E. Beisner, 2016. Functional Traits, Wiley, New York:

    Book  Google Scholar 

  • Oksanen, J., 2013. Multivariate analysis of ecological communities in R: vegan tutorial. R package version, pp. 1–43.

  • Oudin, L. C., N. Lair, M. Leitão, P. Reyes-Marchant, J.-F. Mignot, P. Steinbach, T. Vigneron, J.-P. Berton, M. Bacchi, J. E. Roché & J.-P. Descy, 2009. Rivers of Europe (Eds Tockner K. & C.T. Robinson). British Library, London.

  • Padisák, J., E. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—an experimental study. Hydrobiologia 500: 243–257. https://doi.org/10.1007/978-94-007-1084-9.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. https://doi.org/10.1007/s10750-008-9645-0.

    Article  Google Scholar 

  • Pančić, M. & T. Kiørboe, 2018. Phytoplankton defence mechanisms: traits and trade-offs. Biological Reviews 93: 1269–1303. https://doi.org/10.1111/brv.12395.

    Article  PubMed  Google Scholar 

  • Pannard, A., M. Bormans & Y. Lagadeuc, 2008a. Phytoplankton species turnover controlled by physical forcing at different time scales. Canadian Journal of Fisheries and Aquatic Sciences 65: 47–60. https://doi.org/10.1139/F07-149.

    Article  Google Scholar 

  • Pannard, A., P. Claquin, C. Klein, B. Le Roy & B. Véron, 2008b. Short-term variability of the phytoplankton community in coastal ecosystem in response to physical and chemical conditions’ changes. Estuarine, Coastal and Shelf Science 80: 212–224. https://doi.org/10.1016/j.ecss.2008.08.008.

    Article  ADS  Google Scholar 

  • Pathak, D., M. Hutchins, L. Brown, M. Loewenthal, P. Scarlett, L. Armstrong, D. Nicholls, M. Bowes & F. Edwards, 2021. Hourly prediction of phytoplankton biomass and its environmental controls in lowland rivers. Water Resources Research 57: 1–20. https://doi.org/10.1029/2020WR028773.

    Article  Google Scholar 

  • Peterson, C. G. & R. J. Stevenson, 1989. Seasonality in river phytoplankton: multivariate analyses of data from the Ohio River and six Kentucky tributaries. Hydrobiologia 182: 99–114.

    Article  CAS  Google Scholar 

  • Peterson, B., B. Fry, M. Hullar, S. Saupe & R. Wright, 1994. The distribution and stable carbon isotopic composition of dissolved organic carbon in estuaries. Estuaries 17: 111–121.

    Article  CAS  Google Scholar 

  • Picard, V. & N. Lair, 2005. Spatio-temporal investigations on the planktonic organisms of the Middle Loire (France), during the low water period: biodiversity and community dynamics. Hydrobiologia 551: 69–86. https://doi.org/10.1007/s10750-005-4451-4.

    Article  Google Scholar 

  • Pickett, S. & P.S.White, 1985. The ecology of natural disturbance and patch dynamics, Pickett, STA and PS White (Ed.). the Ecology of Natural Disturbance and Patch Dynamics. Orlando, FL, USA.

  • Popovský, J. & L. A. Pfiester, 1990. Dinophyceae (Dinoflagellida), Gustav Fischer, Stuttgart:, 272.

    Google Scholar 

  • Ptacnik, R., T. Andersen & T. Tamminen, 2010. Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs P limitation. Ecosystems 13: 1201–1214. https://doi.org/10.1007/s10021-010-9380-z.

    Article  CAS  Google Scholar 

  • Reddy, K. R., O. A. Diaz, L. J. Scinto & M. Agami, 1995. Phosphorus dynamics in selected wetlands and streams of the Lake Okeechobee Basin. Ecological Engineering 5(2–3): 183–207. https://doi.org/10.1016/0925-8574(95)00024-0.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111–142.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. The ecology of phytoplankton, Cambridge University Press:

    Book  Google Scholar 

  • Reynolds, C. S. & J.-P. Descy, 1996. The production, biomass and structure of phytoplankton in large rivers, large rivers. Archiv Für Hydrobiologie Supplement 10(1–4): 161–187. https://doi.org/10.1127/lr/10/1996/161.

    Article  Google Scholar 

  • Reynolds, C. S., J.-P. Descy & J. Padisák, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes ? Hydrobiologia 289: 1–7.

    Article  Google Scholar 

  • Rojo, C., M. A. Cobelas & M. Arauzo, 1994. An elementary, structural analysis of river phytoplankton. Hydrobiologia 289: 43–55.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift Für Hydrologie 43: 34–62. https://doi.org/10.1007/BF02502471.

    Article  ADS  Google Scholar 

  • Sabater, S., J. Artigas, C. Durán, M. Pardos, A. M. Romaní, E. Tornés & I. Ylla, 2008. Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Science of the Total Environment 404: 196–206. https://doi.org/10.1016/j.scitotenv.2008.06.013.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619. https://doi.org/10.1111/fwb.12520.

    Article  Google Scholar 

  • Seyedhashemi, H., J.-P. Vidal, J. S. Diamond, D. Thiéry, C. Monteil, F. Hendrickx, A. Maire & F. Moatar, 2022. Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature. Hydrology and Earth System Sciences 26: 2583–2603. https://doi.org/10.5194/hess-26-2583-2022.

    Article  ADS  Google Scholar 

  • Smith, T. E., R. J. Stevenson, N. F. Caraco & J. J. Cole, 1998. Changes in phytoplankton community structure during the zebra mussel (Dreissena polymorpha) invasion of the Hudson River (New York). Journal of Plankton Research 20: 1567–1579.

    Article  Google Scholar 

  • Starmach, K., 1985. Chrysophyceae und Haptophyceae, Gustav Fischer Verlag, Stuttgart:, 515.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis, 2nd ed. Fisheries Research Board of Canada, Ottawa:

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Ver- Einigung Fuer Theoretische Und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Várbíró, G., J. Padisák, Z. Nagy-László, A. Abonyi, I. Stanković, M. Gligora Udovič & V. B-Béres & G. Borics, 2018. How length of light exposure shapes the development of riverine algal biomass in temperate rivers? Hydrobiologia 809: 53–63. https://doi.org/10.1007/s10750-017-3447-1.

    Article  Google Scholar 

  • Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x.

    Article  ADS  Google Scholar 

  • Wade, A. J., E. J. Palmer-Felgate, S. J. Halliday, R. A. Skeffington, M. Loewenthal, H. P. Jarvie, M. J. Bowes, G. M. Greenway, S. J. Haswell, I. M. Bell, E. Joly, A. Fallatah, C. Neal, R. J. Williams, E. Gozzard & J. R. Newman, 2012. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrology and Earth System Sciences 16: 4323–4342. https://doi.org/10.5194/hess-16-4323-2012.

    Article  ADS  Google Scholar 

  • Wang, C., X. Li, Z. Lai, Y. Li, A. Dauta & S. Lek, 2014. Patterning and predicting phytoplankton assemblages in a large subtropical river. Fundamental and Applied Limnology 185: 263–279. https://doi.org/10.1127/fal/2014/0684.

    Article  Google Scholar 

  • Wang, C., C. Baehr, Z. Lai, Y. Gao, S. Lek & X. Li, 2015. Exploring temporal trend of morphological variability of a dominant diatom in response to environmental factors in a large subtropical river. Ecological Informatics 29: 96–106. https://doi.org/10.1016/j.ecoinf.2014.11.002.

    Article  CAS  Google Scholar 

  • Wawrzyniak, V., P. Allemand, S. Bailly, J. Lejot & H. Piégay, 2017. Coupling LiDAR and thermal imagery to model the effects of riparian vegetation shade and groundwater inputs on summer river temperature. Science of the Total Environment 592: 616–626. https://doi.org/10.1016/j.scitotenv.2017.03.019.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wehr, J. D. & J.-P. Descy, 1998. Use of phytoplankton in large river management. Journal of Phycology 34: 741–749.

    Article  Google Scholar 

  • Wehr, J. D., R. G. Sheath & J. P. Kociolek, 2015. Freshwater algae of North America: ecology and classification, Elsevier, Amsterdam:

    Google Scholar 

  • Wei, T. & V. Simko, 2017. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). Available from https://github.com/taiyun/corrplot.

  • Winder, M., J. E. Reuter & S. G. Schladow, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192. https://doi.org/10.1007/s00442-008-0964-7.

    Article  PubMed  ADS  Google Scholar 

  • Wu, N., B. Schmalz & N. Fohrer, 2011. Distribution of phytoplankton in a German lowland river in relation to environmental factors. Journal of Plankton Research 33: 807–820. https://doi.org/10.1093/plankt/fbq139.

    Article  CAS  Google Scholar 

  • Wu, N., C. Faber, X. Sun, Y. Qu, C. Wang, S. Ivetic, T. Riis, U. Ulrich & N. Fohrer, 2016. Importance of sampling frequency when collecting diatoms. Scientific Reports 6(1): 36950. https://doi.org/10.1038/srep36950.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the water basin authority (Agence de l'Eau Loire Bretagne) for providing long-term water quality data and allowing the publication of phytoplankton data. Authors are also grateful to “Electricité de France” for providing data on continuous water temperature measurements for the Middle Loire River. The authors are thankful to Anne Marie Lançon for phytoplankton identification and to Laurence Lanctin, Yannick Bennet, André Dubois, Hervé Couet, and Didier Louvel for their help on the field. AA was supported by the FK 142485 project (National Research, Development and Innovation Office, Hungary) and by the János Bolyai Research. Scholarship of the Hungarian Academy of Sciences (2023). We thank Viktória B-Béres and two anonymous referees for helpful comments on an earlier version of the manuscript.

Funding

The data were collected within the “Eutrophisation-Trends” project during the period 2012-2015 (funds from “Agence de l’Eau Loire Bretagne, “Plan Loire Grandeur Nature” and FEDER European funds).

Author information

Authors and Affiliations

Authors

Contributions

FM, CM, and NG collected data on physical and chemical parameters; AA and ML collected data on phytoplankton; AP and CM conceptualized the study and performed the data analyses and statistics. AP, CM, NG, and AA wrote the manuscript, with equal contributions from all authors.

Corresponding author

Correspondence to Alexandrine Pannard.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Viktória B-Béres, Luigi Naselli-Flores, Judit Padisák & Gábor Borics / Trait- Based Approaches in Micro-Algal Ecology

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2023_5420_MOESM1_ESM.tiff

Figure S1. Time series of environmental and biological parameters at the station Cinq-Mars-La-Pile. Q: water discharge; SM: suspended matter; Nitrates: nitrates concentration; TP: total phosphorus concentration; DSi: silicate concentration; POC: particulate organic carbon; Temp.: temperature; radiation: solar radiation; Chl-a: total pigment concentration; DIP: dissolved inorganic phosphorus concentration; DOC: dissolved organic carbon concentration; Phy biom: phytoplankton biomass calculated from cell counts and grouped by class; Tot biom: total phytoplankton biomass calculated from cell counts; Turnover: turnover rate per day. Supplementary file1 (TIFF 11025 kb)

10750_2023_5420_MOESM2_ESM.tiff

Figure S2. Variance partitioning of taxa biomass depending on time with julian day (X1), water temperature (X2) and dissolved inorganic phosphorus (X3), performed with the function varpart of the package vegan. The analysis was performed on all data, on summer 2013 and on summer 2014. Supplementary file2 (TIFF 8115 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannard, A., Minaudo, C., Leitao, M. et al. Meroplanktic phytoplankton play a crucial role in responding to peak discharge events in the middle lowland section of the Loire River (France). Hydrobiologia 851, 869–895 (2024). https://doi.org/10.1007/s10750-023-05420-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05420-2

Keywords

Navigation