Skip to main content
Log in

Effects of water column depth and sediment base area on the bioturbation efficacy of freshwater operculate snails

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The bioturbation potential of three freshwater operculate snails, Filopaludina bengalensis, Gabbia orcula and Melanoides tuberculata, was compared, using water column depth and sediment surface area as the explanatory variables. Assessment of nutrient fluxes from sediment to overlying water was estimated in glass microcosms, that varied in height (tall, medium, short) and base (narrow, wide), resulting in six habitat conditions. In course of movement and grazing, all the three snail species modified surface architecture of the sediment. Besides, the snails modulated NOXˉ (NO2ˉ-N + NO3ˉ-N), NH4+-N and PO43−-P concentrations and other parameters (TDS, conductivity) of the water column in significantly varying proportions. Snail-induced changes in the rate of nutrient flux were highest for F. bengalensis. Periphytic chlorophyll-a concentration was reduced in all snail-treated microcosms compared to the control. Grazing, scraping and movement of snails on sediment facilitated the release of the nutrients in a species-specific manner depending on sediment surface area and water column depth of the microcosm. Apparently, snails may be useful in mobilizing the sediment content in freshwater lakes and ponds, facilitating ecosystem processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data concerning experiments of the present study can be shared upon authentic and reasonable request.

References

  • Addinsoft SARL., 2010. XLSTAT software, version 10. Addinsoft inc., Paris, France.

  • Aditya, G. & A. Hossain, 2018. Valorization of aquaculture waste in removal of cadmium from aqueous solution: optimization by kinetics and ANN analysis. Applied Water Science 8(2): 1–4.

    Article  ADS  CAS  Google Scholar 

  • Aditya, G. & S. K. Raut, 2005. Feeding of the leech Glossiphonia weberi on the introduced snail Pomacea bridgesii in India. Aquatic Ecology 39(4): 465–471.

    Article  Google Scholar 

  • APHA, American Public Health Association, 2005. Standard Methods for the Examination of Water and Wastewater, APHA-AWWA, Washington, DC:, 2605.

    Google Scholar 

  • Arango, C. P., L. A. Riley, J. L. Tank & R. O. Hall, 2009. Herbivory by an invasive snail increases nitrogen fixation in a nitrogen-limited stream. Canadian Journal of Fisheries and Aquatic Science 66(8): 1309–1317.

    Article  CAS  Google Scholar 

  • Baag, S., S. Mahapatra & S. Mandal, 2020. Unravelling the effects of elevated temperature on the physiological energetics of Bellamya bengalensis. Journal of Thermal Biology 88: 102494.

    Article  PubMed  Google Scholar 

  • Bartl, I., D. Hellemann, C. Rabouille, K. Schulz, P. Tallberg, S. Hietanen & M. Voss, 2019. Particulate organic matter controls benthic microbial N retention and N removal in contrasting estuaries of the Baltic Sea. Biogeosciences 16(18): 3543–3564.

    Article  ADS  CAS  Google Scholar 

  • Biswas, J. K., S. Hazra, J. Majumdar, S. K. Mandal, S. M. Shaheen, S. K. Sarkar, R. Meissner, E. Meers & J. Rinklebe, 2017. Impact of raking and bioturbation-mediated ecological manipulation on sediment–water phosphorus diagenesis: a mesocosm study supported with radioactive signature. Environmental Geochemistry and Health 39(6): 1563–1581.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, J. K., S. Rana, J. N. Bhakta & B. B. Jana, 2009. Bioturbation potential of chironomid larvae for the sediment–water phosphorus exchange in simulated pond systems of varied nutrient enrichment. Ecological Engineering 35(10): 1444–1453.

    Article  Google Scholar 

  • Bowen, J. L., A. R. Babbin, P. J. Kearns & B. B. Ward, 2014. Connecting the dots: linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms. Frontiers in Microbiology 5: 1–10.

    Article  Google Scholar 

  • Chakraborty, A., S. Parveen, D. K. Chanda & G. Aditya, 2020. An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Advances 10: 29543–29554.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, A., G. K. Saha & G. Aditya, 2022. Macroinvertebrates as engineers for bioturbation in freshwater ecosystem. Environmental Science and Pollution Research 29(43): 64447–64468.

    Article  PubMed  Google Scholar 

  • Chakraborty, A., G. K. Saha & G. Aditya, 2023. A comparative study on the bioturbation ability of seven freshwater snail species. Aquatic Ecology 57: 35–52.

    Article  CAS  Google Scholar 

  • Chandra, K., K. C. Gopi, D. V. Rao, K. Valarmathi & J. R. B. Alfred, 2017. Current Status of Freshwater Faunal Diversity in India, Zoological Survey of India, Kolkata:, 624.

    Google Scholar 

  • Chen, M., S. Ding, L. Liu, Y. Wang, X. Xing, D. Wang, M. Gong & C. Zhang, 2016. Fine-scale bioturbation effects of tubificid worm (Limnodrilus hoffmeisteri) on the lability of phosphorus in sediments. Environmental Pollution 219: 604–611.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, B. T., T. L. Lauridsen, H. W. Ravn & M. Bayley, 2005. A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to cypermethrin. Aquatic Toxicology 73(2): 210–220.

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert, R. N., T. Dalu, R. J. Wasserman, A. Sentis, O. L. F. Weyl, P. William Froneman & A. Callaghan, 2021. Prey and predator density-dependent interactions under different water volumes. Ecology & Evolution 00: 1–9.

    Google Scholar 

  • Das, S. & B. S. Khangarot, 2010. Bioaccumulation and toxic effects of cadmium on feeding and growth of an Indian pond snail Lymnaea luteola L. under laboratory conditions. Journal of Hazardous Materials 182(1–3): 763–770.

    Article  CAS  PubMed  Google Scholar 

  • Das, S. & B. S. Khangarot, 2011. Bioaccumulation of copper and toxic effects on feeding, growth, fecundity and development of pond snail Lymnaea luteola L. Journal of Hazardous Materials 185(1): 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Deegan, B. M., S. D. White & G. G. Ganf, 2007. The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquatic Botany 86: 309–315.

    Article  Google Scholar 

  • Dhiman, V. & D. Pant, 2021. Environmental biomonitoring by snails. Biomarkers 26(3): 221–239.

    Article  CAS  PubMed  Google Scholar 

  • EPA, 1971. Method 352.1: Nitrogen, nitrate (colourimetric, Brucine) by spectrophotometer. Methods for the Chemical Analysis of Water and Wastes (MCAWW) (EPA/600/4-79/020).

  • Estragnat, V., L. Volatier, J. B. Gambonnet, F. Hervant, P. Marmonier & F. Mermillod-Blondin, 2020. Sustainability of gastropod introduction for ecological engineering solution in infiltration basins: feeding strategy of V. viviparus. Hydrobiologia 847(3): 665–77.

    Article  Google Scholar 

  • Ewald, M. L., J. W. Feminella, K. K. Lenertz & R. P. Henry, 2009. Acute physiological responses of the freshwater snail Elimia flava (Mollusca: Pleuroceridae) to environmental pH and calcium. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 150(2): 237–245.

    Google Scholar 

  • Facon, B., J. P. Pointier, M. Glaubrecht, C. Poux, P. Jarne & P. David, 2003. A molecular phylogeography approach to biological invasions of the new world by parthenogenetic thiarid snails. Molecular Ecology 12: 3027–3039.

    Article  CAS  PubMed  Google Scholar 

  • Fang, L., P. K. Wong, L. I. Lin, C. Lan & J. W. Qiu, 2010. Impact of invasive apple snails in Hong Kong on wetland macrophytes, nutrients, phytoplankton and filamentous algae. Freshwater Biology 55(6): 1191–1204.

    Article  CAS  Google Scholar 

  • Gascon, C. & J. Travis, 1992. Does the spatial scale of experimentation matter? A test with tadpoles and dragonflies. Ecology 73(6): 2237–2243.

    Article  Google Scholar 

  • Gautreau, E., L. Volatier, G. Nogaro, E. Gouze & F. Mermillod-Blondin, 2020. The influence of bioturbation and water column oxygenation on nutrient recycling in reservoir sediments. Hydrobiologia 847(4): 1027–1040.

    Article  Google Scholar 

  • Ghadouani, A., B. Pinel-Alloul, K. Plath, G. A. Codd & W. Lampert, 2004. Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnology and Oceanography 49(3): 666–679.

    Article  ADS  Google Scholar 

  • Gilbert, F., S. Hulth, V. Grossi & R. C. Aller, 2016. Redox oscillation and benthic nitrogen mineralization within burrowed sediments: an experimental simulation at low frequency. Journal of Experimental Marine Biology and Ecology 482: 75–84.

    Article  CAS  Google Scholar 

  • Gnatyshyna, L., H. Falfushynska, O. Stoliar & R. Dallinger, 2020. Preliminary study of multiple stress response reactions in the pond snail Lymnaea stagnalis exposed to trace metals and a thiocarbamate fungicide at environmentally relevant concentrations. Archives of Environmental Contamination and Toxicology 79(1): 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Goswami, A., A. N. Parikh & P. C. Mankodi, 2010. Taxonomic account of Molluscan diversity from freshwater reservoirs around Rajkot city, Gujarat. Bionano Frontier 3(2): 205–208.

    Google Scholar 

  • Gutiérrez, J. L., C. G. Jones, D. L. Strayer & O. O. Iribarne, 2003. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101(1): 79–90.

    Article  ADS  Google Scholar 

  • Hollander, M. & D. A. Wolfe, 1973. Nonparametric Statistical Methods, Wiley, New York:

    Google Scholar 

  • Hossain, A. & G. Aditya, 2015. Biosorption of cadmium from aqueous solution by shell dust of the fresh water snail Melanoides tuberculata. Bioremediation 19(1): 80–91.

    Article  CAS  Google Scholar 

  • Hossain, A., S. R. Bhattacharyya & G. Aditya, 2015. Biosorption of cadmium from aqueous solution by shell dust of the freshwater snail Lymnaea luteola. Environmental Technology & Innovation 4: 82–91.

    Article  Google Scholar 

  • Hoverman, J. T., C. J. Davis, E. E. Werner, D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2011. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1058.

    Article  ADS  Google Scholar 

  • Hulbert, J., 1984. Pseudoreplication and the design of field experiments in ecology. Ecological Monographs 54: 187–211.

    Article  Google Scholar 

  • Jäger, C. G., S. Diehl & G. M. Schmidt, 2008. Influence of water-column depth and mixing on phytoplankton biomass, community composition, and nutrients. Limnology and Oceanography 53(6): 2361–2373.

    Article  ADS  Google Scholar 

  • Janagal, B. K. & A. K. Khatri, 2016. Ecological study of two ponds near the desert city Bikaner with special reference to trematode infection and its seasonal trends. http://hdl.handle.net/10603/272283.

  • Kang, C., X. Dai, Z. Tong & Y. Shen, 2019. Effects of water depth and sediment nutrients on Vallisneria spinulosa in Lake Poyang. Journal of Freshwater Ecology 34(1): 263–272.

    Article  CAS  Google Scholar 

  • Koch, M., 2004. Observations of the reproduction and population structure of the caenogastropod, Gabbia vertiginosa Frauenfeld, 1862 (Rissooidea: Bithyniidae). Molluscan Research 24(2): 65–73.

    Article  Google Scholar 

  • Koretsky, C. M., C. Meile & P. Van Cappellen, 2002. Quantifying bioirrigation using ecological parameters: a stochastic approach. Geochemical Transactions 3(3): 17–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C. Quintana & G. Banta, 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.

    Article  ADS  Google Scholar 

  • Kuntz, K. L. & A. C. Tyler, 2018. Bioturbating invertebrates enhance decomposition and nitrogen cycling in urban stormwater ponds. Journal of Urban Ecology 4(1): p.juy05.

    Article  Google Scholar 

  • Lacoste, É., A. Piot, P. Archambault, C. W. McKindsey & C. Nozais, 2018. Bioturbation activity of three macrofaunal species and the presence of meiofauna affect the abundance and composition of benthic bacterial communities. Marine Environmental Research 136: 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Li, K.-Y., Z.-W. Liu, Y.-H. Hu & H.-W. Yang, 2009. Snail herbivory on submerged macrophytes and nutrient release: implications for macrophyte management. Ecological Engineering 35: 1664–1667.

    Article  Google Scholar 

  • Li, W., Y. Li, W. Nie, G. Gao, H. Fan, J. Zhong & H. Ding, 2019. Bellamya aeruginosa (Reeve) promote the growth of Elodea nuttallii (Planch) H. St. John in high nutrient environment. Journal of Freshwater Ecology 34(1): 81–89.

    Article  ADS  Google Scholar 

  • Li, Y., X. Hua, F. Zheng, D. Dong, D. Liang & Z. Guo, 2016. Effects of tubificid bioturbation on pore structures in sediment and the migration of sediment particles. Environmental Science and Pollution Research 23(8): 8064–8075.

    Article  CAS  PubMed  Google Scholar 

  • Livshits, G. & L. Fishelson, 1983. Biology and reproduction of the freshwater snail Melanoides tubercolata (Gastropoda: Prosobranchia) in Israel. Israel Journal of Ecology and Evolution 32(1): 21–35.

    Google Scholar 

  • Lukens, N. R., B. M. Kraemer, V. Constant, E. J. Hamann, E. Michel, A. M. Socci, Y. Vadeboncoeur & P. B. McIntyre, 2017. Animals and their epibiota as net autotrophs: size scaling of epibiotic metabolism on snail shells. Freshwater Science 36(2): 307–315.

    Article  Google Scholar 

  • Mao, R., J. Wu, X. Qin, C. Ma, J. Song, D. Cheng, H. Sun & M. Li, 2020. The effect of tubificid bioturbation on vertical water exchange across the sediment–water interface. Water 12(12): 3467.

    Article  Google Scholar 

  • Martínez-Jerónimo, F., F. Espinosa-Chávez & R. Villaseñor, 2015. Effect of culture volume and adult density on the neonate production of Daphnia magna, as a test organism for aquatic toxicity tests. Environmental Toxicology 15: 155–159.

    Article  Google Scholar 

  • Martínez-Jerónimo, F., J. Rodríguez-Estrada & R. Villaseñor-Córdova, 2007. Effect of culture density and volume on Moina micrura (Kurz, 1874) reproduction, and sex ratio in the progeny. Hydrobiologia 594: 69–73.

    Article  Google Scholar 

  • Mason, R. J. & H. Sanders, 2021. Invertebrate zoogeomorphology: a review and conceptual framework for rivers. Wiley Interdisciplinary Reviews: Water 8(5): e1540.

    Article  Google Scholar 

  • Meena, D. K., L. Lianthuamluaia, P. Mishal, H. S. Swain, B. K. Naskar, S. Saha, K. M. Sandhya, S. Kumari, T. Tayung, U. K. Sarkar & B. K. Das, 2019. Assemblage patterns and community structure of macro-zoobenthos and temporal dynamics of eco-physiological indices of two wetlands, in lower Gangetic plains under varying ecological regimes: a tool for wetland management. Ecological Engineering 130: 1–10.

    Article  Google Scholar 

  • Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36(3): 271–284.

    Article  Google Scholar 

  • Meysman, F. J., J. J. Middelburg & C. H. Heip, 2006. Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology & Evolution 21(12): 688–695.

    Article  Google Scholar 

  • Mo, S., X. Zhang, Y. Tang, Z. Liu & N. Kettridge, 2017. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems. Knowledge and Management of Aquatic Ecosystems 418: 44.

    Article  Google Scholar 

  • Mukherji, M. & N. C. Nandi, 2004. Studies on macrozoobenthos of Rabindra Sarovar and Subhas Sarovar in Kolkata in relation to water and sediment characteristics. Rec. zool. Surv. India, Occ. Paper No. 225 1-119.

  • Needham, H. R., C. A. Pilditch, A. M. Lohrer & S. F. Thrush, 2010. Habitat dependence in the functional traits of Austrohelice crassa, a key bioturbating species. Marine Ecology Progress Series 414: 179–193.

    Article  ADS  Google Scholar 

  • Nesemann, H. S., G. Sharma, S. N. Sharma, B. Khanal, D. N. Pradhan, & R. D. Tachamo, 2007. Aquatic inverbrates of the Ganga River System: Mollusca, Annelida, Crustacea (in part). Chandi Press, Kathmandu, Nepal, pp. 263

  • Newman, S. & K. Pietro, 2001. Phosphorus storage and release in response to flooding: implications for Everglades stormwater treatment areas. Ecological Engineering 18: 23–38.

    Article  Google Scholar 

  • Nicholaus, R. & Z. Zheng, 2014. The effects of bioturbation by the Venus clam Cyclina sinensis on the fluxes of nutrients across the sediment–water interface in aquaculture ponds. Aquaculture International 22(2): 913–924.

    Article  CAS  Google Scholar 

  • Olden, J. D., L. Ray, M. C. Mims & M. C. Horner-Devine, 2013. Filtration rates of the non-native Chinese mystery snail (Bellamya chinensis) and potential impacts on microbial communities. Limnetica 32(1): 107–120.

    Google Scholar 

  • Pal, G., G. Aditya & N. Hazra, 2014. Consequences of physical disturbance by tadpoles and snails on chironomid larvae. The Scientific World Journal. https://doi.org/10.1155/2014/850782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, Y. & S. C. Sun, 2016. The effect of habitat orientation on grazing rate of Ceriodaphnia quadrangular: A microcosm study. Fundamental and Applied Limnology 187: 325–333.

    Article  Google Scholar 

  • Pan, Y., Y. Zhang, Y. Peng, Q. Zhao & S. Sun, 2015. Increases of chamber height and base diameter have contrasting effects on grazing rate of two cladoceran species: implications for microcosm studies. PLoS ONE 10(8): e0135786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, Y., Y. Zhang & S. Sun, 2018. Habitat orientation alters the outcome of interspecific competition: a microcosm study with zooplankton grazers. Ecology and Evolution 8(6): 3254–3269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parveen, S., A. Chakraborty, D. K. Chanda, S. Pramanik, A. Barik & G. Aditya, 2020. Microstructure analysis and chemical and mechanical characterization of the shells of three freshwater snails. ACS Omega 5: 25757–25771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, P., R. Karmakar & G. Aditya, 2020. Choosing exotic over the familiar taste: habitat-specific preferences of a malacophagous leech for freshwater snails as prey gastropod establishment? European Journal of Ecology 6(1): 121–136.

    Article  Google Scholar 

  • Paul, P., S. Parbat & G. Aditya, 2022. Phosphate ion removal from aqueous solution using snail shell dust: biosorption potential of waste shells of edible snails. RSC Advances 12: 30011–30023.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters, F., O. Kerimoglu & D. Straile, 2013. Implications of seasonal mixing for phytoplankton production and bloom development. Theoretical Ecology 6(2): 115–129.

    Article  Google Scholar 

  • Petersen, J. E., J. C. Cornwell & W. M. Kemp, 1999. Implicit scaling in the design of experimental aquatic ecosystems. Oikos 85(1): 3–18.

    Article  ADS  Google Scholar 

  • Pigneret, M., F. Mermillod-Blondin, L. Volatier, C. Romestaing, E. Maire, J. Adrien, L. Guillard, D. Roussel & F. Hervant, 2016. Urban pollution of sediments: Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes. Science of the Total Environment 568: 196–207.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pinowska, A., 2002. Effects of snail grazing and nutrient release on growth of the macrophytes Ceratophyllum demersum and Elodea canadensis and the filamentous green alga Cladophora sp. Hydrobiologia 479(1): 83–94.

    Article  Google Scholar 

  • Raut, S. K., 1986. Snails and slugs in relation to human diseases. Environment and Ecology 4: 130–138.

    Google Scholar 

  • Raw, J. L., R. Perissinotto, N. A. F. Miranda & N. Peer, 2016. Feeding dynamics of Melanoides tuberculata. Journal of Molluscan Studies 82(2): 328–335.

    Article  Google Scholar 

  • Saaltink, R. M., E. Honingh, S. C. Dekker, J. Griffioen, M. C. Van Riel, P. F. Verdonschot, J. P. Vink, J. C. Winterwerp & M. J. Wassen, 2019. Respiration and aeration by bioturbating Tubificidae alter biogeochemical processes in aquatic sediment. Aquatic Science 81(1): 13.

    Article  Google Scholar 

  • Sadasivam, S. & A. Manickam, 1992. Biochemical Methods for Agricultural Sciences, Wiley Eastern Limited, New Delhi:, 187p.

    Google Scholar 

  • Saha, B. K., M. S. Jahan & M. A. Hossain, 2013. Taxonomic record and distribution pattern of the banded pond snail, Bellamya bengalensis (Lamarck)(Gastropoda: Mesogastropoda) from pond water habitat of Rajshahi. Bangladesh Journal of Scientific and Industrial Research 48(1): 71–74.

    Article  Google Scholar 

  • Silvola, J., J. Alm, U. Ahlholm, H. Nykanen & P. J. Martikainen, 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology. 1: 219–228.

    Article  Google Scholar 

  • Simpson, I. C., P. A. Roger, R. Oficial & I. F. Grant, 1994. Effects of nitrogen fertiliser and pesticide management on floodwater ecology in a wetland ricefield. Biol Fertil Soils 18(3): 219–227.

    Article  Google Scholar 

  • Smith, J. E., L. A. Kiefer, M. D. Stocker, R. A. Blaustein, S. Ingram & Y. A. Pachepsky, 2019. Depth-dependent response of faecal indicator bacteria in sediments to changes in water column nutrient levels. J Environ Qual 48(4): 1074–1081.

    Article  CAS  PubMed  Google Scholar 

  • Sollie, S. & J. T. Verhoeven, 2008. Nutrient cycling and retention along a littoral gradient in a Dutch shallow lake in relation to water level regime. Water Air Soil Pollution 193(1): 107–121.

    Article  ADS  CAS  Google Scholar 

  • Spencer, M. & P. H. Warren, 1996. The effects of habitat size and productivity on food web structure in small aquatic microcosms. Oikos 75: 419–430.

    Article  ADS  Google Scholar 

  • Strong, E. E., O. Gargominy, W. F. Ponder & P. Bouchet, 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595: 149–166.

    Article  Google Scholar 

  • Subba Rao, N. V., 1989. Handbook of Freshwater Molluscs of India, edited by the Director. Zool. Surv. India, Calcutta, pp 289.

  • Subba Rao, N. V. & S. C. Mitra, 1991. Systematics and Ecology of freshwater Gastropods of parasitological importance. “Snails, Flukes and Man”, ZSI, Calcutta , 55–65.

  • Sun, J., Q. Javed, A. Azeem, I. Ullah, M. Saifullah, R. Kama & D. Du, 2019. Fluctuated water depth with high nutrient concentrations promote the invasiveness of Wedelia trilobata in Wetland. Ecology Evolution 10(2): 832–842.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanner, J. E., 2003. Patch shape and orientation influences on seagrass epifauna are mediated by dispersal abilities. Oikos 100(3): 517–524.

    Article  ADS  MathSciNet  Google Scholar 

  • Temmink, R. J., M. van den Akker, B. J. Robroek, P. M. Cruijsen, A. J. Veraart, S. Kosten, R. C. Peters, G. M. Verheggen-Kleinheerenbrink, A. W. Roelofs, X. van Eek & E. S. Bakker, 2021. Nature development in degraded landscapes: How pioneer bioturbators and water level control soil subsidence, nutrient chemistry and greenhouse gas emission. Pedobiologia 87: 150745.

    Article  Google Scholar 

  • Uiterwaal, S., A. I. Dell & J. P. DeLong, 2018. Arena size modulates functional responses via behavioral mechanisms. Behavioral Ecology 30: 483–489.

    Article  Google Scholar 

  • Underwood, G. J., 1991. Growth enhancement of the macrophyte Ceratophyllum demersum in the presence of the snail Planorbis planorbis: the effect of grazing and chemical conditioning. Freshwater Biology 26: 325–334.

    Article  CAS  Google Scholar 

  • Wakano, J. Y., K. Ikeda, T. Miki & M. Mimura, 2011. Effective dispersal rate is a function of habitat size and corridor shape: Mechanistic formulation of a two-patch compartment model for spatially continuous systems. Oikos 120: 1712–1720.

    Article  ADS  Google Scholar 

  • Whalen, M. A., K. M. Aquilino & J. J. Stachowicz, 2016. Grazer diversity interacts with biogenic habitat heterogeneity to accelerate intertidal algal succession. Ecology 97: 2136–2146.

    Article  PubMed  Google Scholar 

  • Wilhelm, F. M., J. J. Hudson & D. W. Schindler, 1999. Contribution of Gammarus lacustris to phosphorus recycling in a fishless alpine lake. Canadian Journal of Fisheries and Aquatic Science 56: 1679–1686.

    Article  Google Scholar 

  • Wood, S. L. & J. S. Richardson, 2009. Impact of sediment and nutrient inputs on growth and survival of tadpoles of the Western Toad. Freshwater Biology 54(5): 1120–1134.

    Article  CAS  Google Scholar 

  • Wynn, G. & C. J. Paradise, 2001. Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens. BMC Ecology 1(1): 1–9.

    Article  Google Scholar 

  • Yang, Y., J. Zhang, L. Liu, G. Wang, M. Chen, Y. Zhang & X. Tang, 2020. Experimental study on phosphorus release from sediment with fresh-water snail (Bellamya aeruginosa) bioturbation in eutrophic lakes. Journal of Soils and Sediments 20: 2526–236.

    Article  CAS  Google Scholar 

  • Zar, J. H., 2009. Biostatistical Analysis, 5th ed. Prentice Hall/Pearson, Upper Saddle River, NJ:

    Google Scholar 

  • Zealand, A. M. & M. J. Jeffries, 2009. The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK. Hydrobiologia 632: 177–187.

    Article  Google Scholar 

  • Zhang, L., Q. Liao, W. He, J. Shang & C. Fan, 2013. The effects of temperature on oxygen uptake and nutrient flux in sediment inhabited by molluscs. Journal of Limnology 72(1): 2.

    Article  Google Scholar 

  • Zhang, S., X. Fang, J. Zhang, F. Yin, H. Zhang, L. Wu & D. Kitazawa, 2020. The effect of bioturbation activity of the ark clam Scapharca subcrenata on the fluxes of nutrient exchange at the sediment-water interface. Journal of Ocean University of China 19(1): 232–240.

    Article  ADS  Google Scholar 

  • Zhang, Y., Y. Pan, H. Chen, Z. Hu & S. Sun, 2017. Microcosm experimental evidence that habitat orientation affects phytoplankton-zooplankton dynamics. Scientific Reports 7(1): 1–11.

    ADS  Google Scholar 

  • Zheng, Z., J. Lv, K. Lu, C. Jin, J. Zhu & X. Liu, 2011. The impact of snail (Bellamya aeruginosa) bioturbation on sediment characteristics and organic carbon fluxes in an eutrophic pond. Clean-Soil Air Water 39(6): 566–571.

    Article  CAS  Google Scholar 

  • Zhu, J., K. Lu & X. Liu, 2013. Can the freshwater snail Bellamya aeruginosa (Mollusca) affect phytoplankton community and water quality? Hydrobiologia 707(1): 147–157.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Head, Department of Zoology, University of Calcutta for the facilities provided in carrying out this work. GA and GKS acknowledge the financial assistance of UGC, through UGC-UPE II programme of University of Calcutta, Kolkata, India. AC acknowledges UGC-URF (Sanction No. UGC/487/Fellow (Univ) dated 04.07.2017: University of Calcutta) for providing financial support.

Funding

The first author AC acknowledges the financial assistance from UGC, India through University of Calcutta in accomplishing this compilation (Sanction No. UGC/487/Fellow (Univ) dated 04.07.2017: University of Calcutta).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Aditya.

Ethics declarations

Competing interests

As authors of this article we declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors provide consent for publication of this article in Ecological Processes.

Additional information

Handling editor: Manuel Lopes-Lima

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A., Saha, G.K. & Aditya, G. Effects of water column depth and sediment base area on the bioturbation efficacy of freshwater operculate snails. Hydrobiologia 851, 1397–1414 (2024). https://doi.org/10.1007/s10750-023-05380-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05380-7

Keywords

Navigation