Skip to main content

Advertisement

Log in

Comparative identification of phytoplankton taxonomic and functional group approach in karst lakes using classical microscopy and eDNA metabarcoding for ecological status assessment

  • MICROALGAL FUNCTIONAL TRAITS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton is one of the five biological quality elements used to assess the ecological status of lakes within the Water Framework Directive. Classical morphological Utermöhl method and eDNA metabarcoding by Ilumina sequencing the hypervariable V9 region of the eukaryotic SSU rRNA gene were used to analyse the qualitative and quantitative composition of the phytoplankton and compared at the taxonomic and FG level to highlight advantages and disadvantages of eDNA metabarcoding method over classical microscopy. Samples were collected from April to September in seven Croatian natural karst lakes. Cluster analysis based on the Bray–Curtis similarity of taxa biomass (microscopy) and number of sequences (eDNA metabarcoding) clearly separated lakes showing that eDNA metabarcoding is sensitive to species change. Overlap at the species level between methods was found primarily in the taxa of Cryptophyta, Miozoa, and Ochrophyta, while some very common taxa of Bacillariophyta, Charophyta, and Chlorophyta identified by microscopy were not detected by eDNA metabarcoding, possibly due to incompleteness of the reference databases. At a higher organizational level, the results showed poor overlap of taxonomic and functional group composition and poor comparability of relative biomass to relative number of sequences, indicating the need to complete reference databases and standardize quantification to further develop eDNA metabarcoding for ecological status assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Almanza, V., P. Pedreros, H. Laughinghouse Iv, J. Félez, O. Parra, M. Azócar & R. Urrutia, 2018. Association between trophic state, watershed use and blooms of cyanobacteria in south-central Chile. Limnologica 75: 30–41. https://doi.org/10.1016/j.limno.2018.11.004.

    Article  CAS  Google Scholar 

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, S., 2017. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  • Angeler, D. G., C. R. Allen, H. E. Birgé, S. Drakare, B. G. McKie & R. K. Johnson, 2014. Assessing and managing freshwater ecosystems vulnerable to environmental change. AMBIO 43(1): 113–125. https://doi.org/10.1007/s13280-014-0566-z.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Blanco, S., S. Romo & A. Garcia-Murcia, 2019. First record of Synedropsis roundii (Bacillariophyta, Fragilariaceae) in the Mediterranean region. Mediterranean Marine Science 20: 502. https://doi.org/10.12681/mms.18690.

    Article  Google Scholar 

  • Bonacci, O., 1984. Promjene vodnog režima Bačinskih jezera - The Bačina Lakes water regime changes. Građevinar 36: 53–58.

    Google Scholar 

  • Bonacci, O., 2014. Analysis of variations in water levels of the Vrana Lake on the island of the Cres (Croatia). Hrvatske Vode : Časopis Za Vodno Gospodarstvo 22(90): 337–346.

    Google Scholar 

  • Borics, G., G. Varbiro, I. Grigorszky, E. Krasznai, S. Szabó & K. Keve Tihamér, 2007. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Arch Hydrobiol 161: 465–486.

    Google Scholar 

  • Borics, G., G. Wolfram, G. Chiriac, D. Belkinova, K. Donabaum & S. Poikane, 2019. Intercalibration of the national classifications of ecological status for Eastern Continental lakes Biological quality Element: Phytoplankton. EUR 29337 EN, Publications Office of the European Union, Luxemburg.

  • Bushnell, B., 2014. BBMap: A Fast, Accurate, Splice-Aware Aligner. Paper presented at the 9th Annual Genomics of Energy & Environment Meeting, Walnut Creek, USA.

  • Caporaso, J., J. Kuczynski, J. Stombaugh, K. Bittinger, F. Bushman, E. Costello, N. Fierer, A. Peña, J. Goodrich, J. Gordon, G. Huttley, S. Kelley, D. Knights, J. Koenig, R. Ley, C. Lozupone, D. McDonald, B. Muegge, M. Pirrung & R. Knight, 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–336. https://doi.org/10.1038/nmeth.f.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CEN-EN, 2006. Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermohl technique) (EN 15204:2006). European Committee for Standardization (CEN) Brussels, Belgium.

  • CEN-EN, 2009. Water quality - Guidance standard for the surveying, sampling and laboratory analysis of phytobenthos in shallow running water (EN 15708:2009). European Committee for Standardization (CEN), Brussels, Belgium.

  • CEN-EN, 2015a. Water quality - Guidance on quantitative and qualitative sampling of phytoplankton from inland waters (EN 16698:2015a). European Committee for Standardization (CEN), Brussels, Belgium.

  • CEN-EN, 2015b. Water quality - Guidance on the estimation of phytoplankton biovolume (EN 16695:2015b). European Committee for Standardization, Brussels, Belgium.

  • Choi, J. & J. S. Park, 2020. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Scientific Reports 10(1): 6519. https://doi.org/10.1038/s41598-020-63561-z.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

  • Cordero, P., M. Ekvall, J. Ratcovich, M. Soares, S. Wilken, H. Zhang & L.-A. Hansson, 2017. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshwater Biology 62: 1869–1878. https://doi.org/10.1111/fwb.13027.

    Article  Google Scholar 

  • Dodds, W. K. & M. R. Whiles, 2020. Chapter 24 - Freshwater Ecosystems. In Dodds, W. K. & M. R. Whiles (eds), Freshwater Ecology (Third Edition) Academic Press: 723–764.

    Chapter  Google Scholar 

  • EC, 2011. Common Implementation Strategy for WFD 2000/60/EC, Guidance Document No. 14 - Guidance document on the intercalibration process 2008–2011. Official Journal of the European Communities:102 doi:https://doi.org/10.2779/99432.

  • Edgar, R., B. Haas, J. Clemente, C. Quince & R. Knight, 2011. UCHIIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16): 2194–2200. https://doi.org/10.1093/bioinformatics/btr381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiler, A., S. Drakare, S. Bertilsson, J. Pernthaler, S. Peura, C. Rofner, K. Šimek, Y. Yang, P. Znachor & E. Lindström, 2013. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8(1): e53516. https://doi.org/10.1371/journal.pone.0053516.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Fluet-Chouinard, E., M. L. Messager, B. Lehner & C. M. Finlayson, 2017. Freshwater Lakes and Reservoirs. In Finlayson, C. M., G. R. Milton, R. C. Prentice & N. C. Davidson (eds), The Wetland Book: II: Distribution, Description and Conservation Springer, Dordrecht: 1–18.

    Google Scholar 

  • Geisen, S., D. Vaulot, F. Mahé, E. Lara, C. de Vargas & D. Bass, 2019. A user guide to environmental protistology: primers, metabarcoding, sequencing, and analyses. bioRxiv. https://doi.org/10.1101/850610.

    Article  Google Scholar 

  • Gligora, M., A. Plenković-Moraj, K. Kralj, I. Grigorszky & D. Peroš-Pucar, 2007. The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia). Hydrobiologia 584(1): 337–346. https://doi.org/10.1007/s10750-007-0590-0.

    Article  CAS  Google Scholar 

  • Gligora Udovič, M., A. Cvetkoska, P. Žutinić, S. Bosak, I. Stanković, I. Špoljarić, G. Mršić, K. Kralj Borojević, A. Ćukurin & A. Plenković-Moraj, 2017. Defining centric diatoms of most relevant phytoplankton functional groups in deep karst lakes. Hydrobiologia 788(1): 169–191. https://doi.org/10.1007/s10750-016-2996-z.

    Article  Google Scholar 

  • Golden Software, I., 2020. Grapher TM . Golden Software, Inc. 809 14th Street, Golden, Colorado 80401.

  • Groendahl, S., M. Kahlert & P. Fink, 2017. The best of both worlds: a combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods. PLoS ONE 12(2): e0172808. https://doi.org/10.1371/journal.pone.0172808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiry, M. D. & G. M. Guiry, 2022. AlgaeBase, World-wide electronic publication. National University of Ireland, Galway.

    Google Scholar 

  • Hanžek, N., M. Gligora Udovič, K. Kajan, G. Borics, G. Várbíró, T. Stoeck, P. Žutinić, S. Orlić & I. Stanković, 2021. Assessing ecological status in karstic lakes through the integration of phytoplankton functional groups, morphological approach and environmental DNA metabarcoding. Ecological Indicators 131: 108166. https://doi.org/10.1016/j.ecolind.2021.108166.

    Article  CAS  Google Scholar 

  • Hering, D., A. Borja, J. Jones, D. Pont, P. Boets, A. Bouchez, K. Bruce, S. Drakare, B. Hänfling, M. Kahlert, F. Leese, K. Meissner, P. Mergen, Y. Reyjol, P. Segurado, A. Vogler & M. Kelly, 2018. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research 138: 192–205. https://doi.org/10.1016/j.watres.2018.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Ho, J. C., A. M. Michalak & N. Pahlevan, 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574(7780): 667–670. https://doi.org/10.1038/s41586-019-1648-7.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huo, S., X. Li, B. Xi, H. Zhang, C. Ma & Z. He, 2020. Combining morphological and metabarcoding approaches reveals the freshwater eukaryotic phytoplankton community. Environmental Sciences Europe 32(1): 37. https://doi.org/10.1186/s12302-020-00321-w.

    Article  CAS  Google Scholar 

  • Kelly, M., N. Boonham, S. Juggins, P. Kille, D. Mann, D. Pass, M. Sapp, S. Sato & R. Glover, 2018. A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers. Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH.

  • Kim, K., H. . Jo. Park & I.-S. Kwak, 2019. Comparison of water sampling between environmental DNA metabarcoding and conventional microscopic identification: a case study in Gwangyang Bay. South Korea. Applied Sciences 9: 3272. https://doi.org/10.3390/app9163272.

    Article  CAS  Google Scholar 

  • Laplace-Treyture, C. & T. Feret, 2016. Performance of the Phytoplankton Index for Lakes (IPLAC): A multimetric phytoplankton index to assess the ecological status of water bodies in France. Ecological Indicators 69: 686–698. https://doi.org/10.1016/j.ecolind.2016.05.025.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11(2): 143–170. https://doi.org/10.1007/BF00007865.

    Article  Google Scholar 

  • Mahé, F., T. Rognes, C. Quince, C. de Vargas & M. Dunthorn, 2015. Swarmv2: Highly-scalable and high-resolution amplicon clustering. PeerJ 3: e1420. https://doi.org/10.7717/peerj.1420.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malashenkov, D. V., V. Dashkova, K. Zhakupova, I. A. Vorobjev & N. S. Barteneva, 2021. Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches. Scientific Reports 11(1): 16130. https://doi.org/10.1038/s41598-021-95223-z.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Markowska, J., 2004. The origins of the Plitvice lakes (Croatia). Miscellanea Geographica 11: 93–99. https://doi.org/10.2478/mgrsd-2004-0012.

    Article  Google Scholar 

  • Martin, J. L., I. Santi, P. Pitta, U. John & N. Gypens, 2022. Towards quantitative metabarcoding of eukaryotic plankton: an approach to improve 18S rRNA gene copy number bias. Metabarcoding and Metagenomics 6: e85794.

    Article  Google Scholar 

  • Mauri, M., T. Elli, G. Caviglia, G. Uboldi & M. Azzi, 2017. RAWGraphs: A Visualisation Platform to Create Open Outputs. Paper presented at the Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Cagliari, Italy.

  • Mischke, U., U. Riedmüller, E. Hoehn, I. Schönfelder & B. Nixdorf, 2008. Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In Mischke Ute, N. B. (ed) Gewässerreport (Nr 10):„Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie“. Brandenburgische Technische Universität, 117–146.

  • Mischke, U., D. Belkinova, S. Birk, G. Borics, R. Garbea, D. Hlúbiková, J. Jekabsone, L. Opatrilova, P. Panek, J. Picińska-Fałtynowicz, K. Piirsoo, M. Placha, N. Rotaru, J. Stankeviciene, I. Stanković, J. Van Wichelen, G. Varbiro, T. Virbickas & G. Wolfram, 2018. Intercalibrating the national classifications of ecological status for very large rivers in Europe: Biological Quality Element: Phytoplankton. EUR 29337 EN, Publications Office of the European Union, Luxemburg.

  • Mortágua, A., V. Vasselon, R. Oliveira, C. Elias, C. Chardon, A. Bouchez, F. Rimet, M. João Feio & S. F. P. Almeida, 2019. Applicability of DNA metabarcoding approach in the bioassessment of Portuguese rivers using diatoms. Ecological Indicators 106: 105470. https://doi.org/10.1016/j.ecolind.2019.105470.

    Article  CAS  Google Scholar 

  • Muhammad, B. L., T. Kim & J.-S. Ki, 2021. 18S rRNA analysis reveals high diversity of phytoplankton with emphasis on a naked dinoflagellate gymnodinium sp. at the Han River (Korea). Diversity. https://doi.org/10.3390/d13020073.

    Article  Google Scholar 

  • Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553(1): 1–14. https://doi.org/10.1007/s10750-005-1393-9.

    Article  Google Scholar 

  • Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1): 1–19. https://doi.org/10.1007/s10750-008-9645-0.

    Article  Google Scholar 

  • Pawlowski, J., M. Kelly-Quinn, F. Altermatt, L. Apothéloz-Perret-Gentil, P. Beja, A. Boggero, A. Borja, A. Bouchez, T. Cordier & I. Domaizon, 2018. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of the Total Environment 637–638: 1295–1310. https://doi.org/10.1016/j.scitotenv.2018.05.002.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Pérez Burillo, J., R. Trobajo, V. Vasselon, F. Rimet, A. Bouchez & D. Mann, 2020. Evaluation and sensitivity analysis of diatom DNA metabarcoding for WFD bioassessment of mediterranean rivers. Science of the Total Environment 727: 138445. https://doi.org/10.1016/j.scitotenv.2020.138445.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Piredda, R., M. P. Tomasino, A. D’Erchia, C. Manzari, G. Pesole, M. Montresor, W. Kooistra, D. Sarno & A. Zingone, 2017. Diversity and temporal patterns of planktonic protist assemblages at a mediterranean long term ecological research site. FEMS Microbiology Ecology 93(1): fiw200. https://doi.org/10.1093/femsec/fiw200.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, C., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24(5): 417–428. https://doi.org/10.1093/plankt/24.5.417.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift Für Hydrologie 43(1): 34–62. https://doi.org/10.1007/BF02502471.

    Article  ADS  Google Scholar 

  • Salmaso, N., V. Vasselon, F. Rimet, M. Vautier, T. Elersek, A. Boscaini, C. Donati, M. Moretto, M. Pindo, G. Riccioni, E. Stefani, C. Capelli, F. Lepori, R. Kurmayer, U. Mischke, A. K. Klemenčič, K. Novak, C. Greco, G. Franzini, G. Fusato, F. Giacomazzi, A. Lea, S. Menegon, C. Zampieri, A. Macor, D. Virgilio, E. Zanut, R. Zorza, F. Buzzi & I. Domaizon, 2022. DNA sequence and taxonomic gap analyses to quantify the coverage of aquatic cyanobacteria and eukaryotic microalgae in reference databases: Results of a survey in the Alpine region. Science of the Total Environment 834: 155175. https://doi.org/10.1016/j.scitotenv.2022.155175.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Santi, I., P. Kasapidis, I. Karakassis & P. Pitta, 2021. A comparison of DNA metabarcoding and microscopy methodologies for the study of aquatic microbial eukaryotes. Diversity 13(5): 180. https://doi.org/10.3390/d13050180.

    Article  CAS  Google Scholar 

  • Santoferrara, L. F., 2019. Current practice in plankton metabarcoding: optimization and error management. Journal of Plankton Research 41(5): 571–582. https://doi.org/10.1093/plankt/fbz041.

    Article  CAS  Google Scholar 

  • Šiljeg, A., S. Lozic & S. Šiljeg, 2015. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia. Hydrology and Earth System Sciences 9: 3653–3666. https://doi.org/10.5194/hess-19-3653-2015.

    Article  ADS  Google Scholar 

  • Søndergaard, M. & E. Jeppesen, 2007. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology 44: 1089–1094. https://doi.org/10.1111/j.1365-2664.2007.01426.x.

    Article  Google Scholar 

  • Stanković, I., T. Vlahović, M. Gligora Udovič, G. Várbíró & G. Borics, 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698(1): 217–231. https://doi.org/10.1007/s10750-012-1148-3.

    Article  CAS  Google Scholar 

  • Stoeck, T., D. Bass, M. Nebel, R. Christen, M. Jones, H.-W. Breiner & T. Richards, 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology 19(1): 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x.

    Article  CAS  PubMed  Google Scholar 

  • Tzafesta, E., B. Saccomanno, F. Zangaro, M. Vadrucci, V. Specchia & M. Pinna, 2022. DNA barcode gap analysis for multiple marker genes for phytoplankton species biodiversity in mediterranean aquatic ecosystems. Biology 11: 1277. https://doi.org/10.3390/biology11091277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Gazette, 20/23. Uredba o izmjenama i dopunama Uredbe o standardu kakvoće voda (Regulation on amendments to the Regulation of water quality standard).

  • Utermöhl, H., 1958. Methods of collecting plankton for various purposes are discussed. SIL Communications 9(1): 1–38. https://doi.org/10.1080/05384680.1958.11904091.

    Article  Google Scholar 

  • Vasistha, P. & R. Ganguly, 2020. Water quality assessment of natural lakes and its importance: an overview. Materials Today: Proceedings 32: 544–552. https://doi.org/10.1016/j.matpr.2020.02.092.

    Article  CAS  Google Scholar 

  • Vasselon, V., A. Bouchez, F. Rimet, S. Jacquet, R. Trobajo, M. Corniquel, K. Tapolczai & I. Domaizon, 2017. Avoiding quantification bias in metabarcoding: application of a cell biovolume correction factor in diatom molecular biomonitoring. Methods in Ecology and Evolution 9(4): 1060–1069. https://doi.org/10.1111/2041-210X.12960.

    Article  Google Scholar 

  • Weigand, H., A. J. Beermann, F. Čiampor, F. O. Costa, Z. Csabai, S. Duarte, M. F. Geiger, M. Grabowski, F. Rimet, B. Rulik, M. Strand, N. Szucsich, A. M. Weigand, E. Willassen, S. A. Wyler, A. Bouchez, A. Borja, Z. Čiamporová-Zaťovičová, S. Ferreira, K.-D.B. Dijkstra, U. Eisendle, J. Freyhof, P. Gadawski, W. Graf, A. Haegerbaeumer, B. B. van der Hoorn, B. Japoshvili, L. Keresztes, E. Keskin, F. Leese, J. N. Macher, T. Mamos, G. Paz, V. Pešić, D. M. Pfannkuchen, M. A. Pfannkuchen, B. W. Price, B. Rinkevich, M. A. L. Teixeira, G. Várbíró & T. Ekrem, 2019. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Science of the Total Environment 678: 499–524. https://doi.org/10.1016/j.scitotenv.2019.04.247.

    Article  CAS  PubMed  ADS  Google Scholar 

  • WFD, 2000. Directive 2000/60/ec of the European parliament and of the council 22.12.2000. Official Journal of the European Communities L327: 1–72.

    Google Scholar 

  • Woolway, R. I., B. M. Kraemer, J. D. Lenters, C. J. Merchant, C. M. O’Reilly & S. Sharma, 2020. Global lake responses to climate change. Nature Reviews Earth & Environment 1(8): 388–403. https://doi.org/10.1038/s43017-020-0067-5.

    Article  ADS  Google Scholar 

  • Xiao, X., H. Sogge, K. Lagesen, A. Tooming-Klunderud, K. Jakobsen & T. Rohrlack, 2014. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLOS ONE 9(8): e106510. https://doi.org/10.1371/journal.pone.0106510.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Andrijana Brozinčević, Nikola Markić and Petar Hodak from Plitvice Lakes National Park, Gordana Goreta from Krka National Park, Maja Ćuže Denona, Maja Bjelić and Dario Rogić from Vransko Lake Nature Park, Vera and Andre Bogunović at Baćina Lakes and all the staff of the pumping station at Lake Vransko on the island of Cres for their technical support in the field. We also thank to two unknown reviewers for making this manuscript better with their detailed comments and suggestions.

Funding

This work was supported by Hrvatske vode within the project “Application of eDNA metabarcoding (eDNA) for ecological status assessment in the Republic of Croatia”. SO and KK were partially supported by the project STIM—REI, Contract Number: KK.01.1.1.01.0003, a project funded by the European Union through the European Regional Development Fund—the Operational Programme Competitiveness and Cohesion 2014–2020 (KK.01.1.1.01) and the DNKVODA project, Contract Number: KK.01.2.1.02.0335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Stanković.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling editor: Sidinei M. Thomaz

Guest editors: Viktória B-Béres, Luigi Naselli-Flores, Judit Padisák & Gábor Borics / Trait-Based Approaches in Micro-Algal Ecology

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1636 KB)

Supplementary file2 (TXT 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanžek, N., Gligora Udovič, M., Kajan, K. et al. Comparative identification of phytoplankton taxonomic and functional group approach in karst lakes using classical microscopy and eDNA metabarcoding for ecological status assessment. Hydrobiologia 851, 1015–1034 (2024). https://doi.org/10.1007/s10750-023-05344-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05344-x

Keywords

Navigation