Skip to main content
Log in

Glacial recession in Andean North-Patagonia (Argentina): microbial communities in benthic biofilms of glacier-fed streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Global climate change produces important shifts in the glacial runoff, modifying the relative contributions of meltwater and glacial clay discharges into headwater streams. Physical and chemical factors of glacier-fed streams are affected, such as total suspended solids (TSS), and nutrient concentrations. Here, we analyze the composition of the biofilm bacterial community by 16S rRNA sequencing along a glacier-fed network (Upper Río Manso) located in North Patagonian Andes (Argentina). We also analyzed changes in environmental factors in relation to the bacteria composition in different seasons (spring, summer, and autumn). Our results showed that the dominant phyla were Proteobacteria, Cyanobacteria, Bacteroidota, Actinobacteriota, and Acidobacteriota. Bacterial community composition changes longitudinally and seasonally in relation to glacial influence (TSS and phosphorus concentrations). We identified phylotypes of Proteobacteria (Polaromonas, Rhodoferax, and Methylotenera) that were only present in headwaters of the fluvial systems. In addition, Cyanobacteria also presented substantial changes along the main course of Manso River and among seasons. The increase of Cyanobacteria abundance was favored by the glacial influence both longitudinally and seasonally. Overall our results contribute to the understanding of the patterns of biodiversity and bacterial composition under a constant glacial retreat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data generated during and/or analyzed during the current study will be available at the data repository of Universidad del Comahue http://rdi.uncoma.edu.ar/. The sequencing data have been deposited in NCBI BioProject PRJNA901989 with the Biosample accessions SAMN31743636-SAMN31743660.

References

  • Andersen, K. S., R. H. Kirkegaard, S. M. Karst & M. Albertsen, 2018. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. BioRxiv299537.

  • APHA, 2005. Methods for the Examination of Water and Wastewater. Washington, DC, USA: American Public Health Association, American Water Works Association, Water Environment Federation.

  • Battin, T. & D. Sengschmitt, 1999. Linking sediment biofilms, hydrodynamics, and river bed clogging: evidence from a large river. Microbial Ecology 37: 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Battin, T. J., A. Wille, B. Sattler & R. Psenner, 2001. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67: 799–807. https://doi.org/10.1128/AEM.67.2.799-807.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battin, T. J., L. A. Kaplan, J. D. Newbold, X. Cheng & C. Hansen, 2003. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69: 5443–5452. https://doi.org/10.1128/AEM.69.9.5443-5452.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romani & A. I. Packmann, 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14: 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Beniston, M., D. Farinotti, M. Stoffel, L. M. Andreassen, E. Coppola, N. Eckert, A. Fantini, F. Giacona, C. Hauck & M. Huss, 2018. The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere 12: 759–794.

    Article  Google Scholar 

  • Besemer, K., 2015. Biodiversity, community structure and function of biofilms in stream ecosystems. Res Microbiol 166: 774–781. https://doi.org/10.1016/j.resmic.2015.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Besemer, K., H. Peter, J. B. Logue, S. Langenheder, E. S. Lindström, L. J. Tranvik & T. J. Battin, 2012. Unraveling assembly of stream biofilm communities. The ISME Journal 6: 1459–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi, M. M. & D. Ariztegui, 2012. Vegetation history of the Río Manso Superior catchment area, Northern Patagonia (Argentina), since the last deglaciation. The Holocene 22: 1283–1295.

    Article  Google Scholar 

  • Bourquin, M., S. B. Busi, S. Fodelianakis, H. Peter, A. Washburne, T. J. Kohler, L. Ezzat, G. Michoud, P. Wilmes & T. J. Battin, 2022. The microbiome of cryospheric ecosystems. Nat Commun 13: 3087. https://doi.org/10.1038/s41467-022-30816-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, L. E., D. M. Hannah & A. M. Milner, 2007. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biology 13: 958–966.

    Article  Google Scholar 

  • Busi, S. B., M. Bourquin, S. Fodelianakis, G. Michoud, T. J. Kohler, H. Peter, P. Pramateftaki, M. Styllas, M. Tolosano & V. De Staercke, 2022. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nature Communications 13: 1–15.

    Article  Google Scholar 

  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson & S. P. Holmes, 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13: 581–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, C. A. Lozupone, P. J. Turnbaugh, N. Fierer & R. Knight, 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108: 4516–4522.

    Article  CAS  Google Scholar 

  • Chillrud, S., F. Pedrozo, P. Temporetti, H. Planas & P. Froelich, 1994. Chemical weathering of phosphate and germanium in glacial meltwater streams: effects of subglacial pyrite oxidation. Limnology and Oceanography 39: 1130–1140.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Friedrich, C. G., F. Bardischewsky, D. Rother, A. Quentmeier & J. Fischer, 2005. Prokaryotic sulfur oxidation. Current Opinion in Microbiology 8: 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Gao, H., T. Han, Y. Liu & Q. Zhao, 2017. Use of auxiliary data of topography, snow and ice to improve model performance in a glacier-dominated catchment in Central Asia. Hydrology Research 48: 1418–1437.

    Article  Google Scholar 

  • Garcia-Lopez, E., A. Moreno, M. Bartolomé, M. Leunda, C. Sancho & C. Cid, 2021. Glacial ice age shapes microbiome composition in a receding southern European glacier. Frontiers in microbiology3297.

  • Hannah, D. M., L. E. Brown, A. M. Milner, A. M. Gurnell, G. R. McGregor, G. E. Petts, B. P. Smith & D. L. Snook, 2007. Integrating climate–hydrology–ecology for alpine river systems. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 636–656.

    Article  Google Scholar 

  • Hassell, N., K. A. Tinker, T. Moore & E. A. Ottesen, 2018. Temporal and spatial dynamics in microbial community composition within a temperate stream network. Environmental Microbiology 20: 3560–3572.

    Article  PubMed  Google Scholar 

  • Hodson, A., P. Mumford & D. Lister, 2004. Suspended sediment and phosphorus in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrological Processes 18: 2409–2422.

    Article  Google Scholar 

  • Hodson, A., A. Nowak, M. Sabacka, A. Jungblut, F. Navarro, D. Pearce, M. L. Ávila-Jiménez, P. Convey & G. Vieira, 2017. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff. Nature Communications 8: 1–7.

    Article  Google Scholar 

  • Huber, P., S. Metz, F. Unrein, G. Mayora, H. Sarmento & M. Devercelli, 2020. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. The ISME Journal 14: 2951–2966.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huss, M. & R. Hock, 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change 8: 135–140.

    Article  Google Scholar 

  • Huss, M., B. Bookhagen, C. Huggel, D. Jacobsen, R. S. Bradley, J. J. Clague, M. Vuille, W. Buytaert, D. R. Cayan & G. Greenwood, 2017. Toward mountains without permanent snow and ice. Earth’s Future 5: 418–435.

    Article  Google Scholar 

  • Ilg, C. & E. Castella, 2006. Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwater Biology 51: 840–853.

    Article  Google Scholar 

  • Ipek, Y. & P. D. Jeyasingh, 2021. Growth and ionomic responses of a freshwater cyanobacterium to supplies of nitrogen and iron. Harmful Algae 108: 102078.

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya, M. G., D. A. Beck, D. Suciu, A. Pozhitkov, M. E. Lidstrom & L. Chistoserdova, 2010. Functioning in situ: gene expression in Methylotenera mobilis in its native environment as assessed through transcriptomics. The ISME Journal 4: 388–398.

    Article  PubMed  Google Scholar 

  • Kanna, N., S. Sugiyama, Y. Fukamachi, D. Nomura & J. Nishioka, 2020. Iron Supply by Subglacial Discharge Into a Fjord Near the Front of a Marine‐Terminating Glacier in Northwestern Greenland. Global Biogeochemical Cycles 34: doi:https://doi.org/10.1029/2020gb006567.

  • Kim, J. & D. C. Rees, 1994. Nitrogenase and biological nitrogen fixation. Biochemistry 33: 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Kolde, R., 2019. pheatmap: Pretty Heatmaps. R package version 1.0. 12. CRAN. R-project. org/package= pheatmap.

  • Kuhn, J., P. Andino, R. Calvez, R. Espinosa, L. Hamerlik, S. Vie, O. Dangles & D. Jacobsen, 2011. Spatial variability in macroinvertebrate assemblages along and among neighbouring equatorial glacier-fed streams. Freshwater Biology 56: 2226–2244.

    Article  Google Scholar 

  • Lenth, R., H. Singmann, J. Love, P. Buerkner & M. Herve, 2018. Emmeans: estimated marginal means, aka least-squares means. R Package Version 1: 3.

    Google Scholar 

  • Malazarte, J., T. Muotka, J. Jyvasjarvi, K. Lehosmaa, J. Nyberg & K. L. Huttunen, 2022. Bacterial communities in a subarctic stream network: spatial and seasonal patterns of benthic biofilm and bacterioplankton. Mol Ecol. https://doi.org/10.1111/mec.16711.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martyniuk, N., B. Modenutti & E. G. Balseiro, 2014. Can increased glacial melting resulting from global change provide attached algae with transient protection against high irradiance? Freshwater Biology 59: 2290–2302.

    Article  CAS  Google Scholar 

  • Martyniuk, N., B. Modenutti & E. Balseiro, 2016. Forest structure affects the stoichiometry of periphyton primary producers in mountain streams of Northern Patagonia. Ecosystems 19: 1225–1239.

    Article  Google Scholar 

  • Martyniuk, N., B. Modenutti & E. G. Balseiro, 2019. Light intensity regulates stoichiometry of benthic grazers through changes in the quality of stream periphyton. Freshwater Science 38: 391–405. https://doi.org/10.1086/703441.

    Article  Google Scholar 

  • Martyniuk, N., M. S. Souza, M. Bastidas Navarro, E. Balseiro & B. Modenutti, 2022. Nutrient limitation affects biofilm enzymatic activities in a glacier-fed river. Hydrobiologia1–18.

  • Masiokas, M. H., A. Rabatel, A. Rivera, L. Ruiz, P. Pitte, J. L. Ceballos, G. Barcaza, A. Soruco, F. Bown & E. Berthier, 2020. A review of the current state and recent changes of the Andean cryosphere. Frontiers in Earth Science 8: 99.

    Article  Google Scholar 

  • Meyer, D. D., P. A. M. de Andrade, A. Durrer, F. D. Andreote, G. Corção & A. Brandelli, 2016. Bacterial communities involved in sulfur transformations in wastewater treatment plants. Applied Microbiology and Biotechnology 100: 10125–10135.

    Article  CAS  PubMed  Google Scholar 

  • Milner, A. M. & G. E. Petts, 1994. Glacial rivers: physical habitat and ecology. Freshwater Biology 32: 295–307.

    Article  Google Scholar 

  • Milner, A. M., J. E. Brittain, E. Castella & G. E. Petts, 2001. Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshwater Biology 46: 1833–1847.

    Article  Google Scholar 

  • Milner, A. M., L. E. Brown & D. M. Hannah, 2009. Hydroecological response of river systems to shrinking glaciers. Hydrological Processes: an International Journal 23: 62–77.

    Article  CAS  Google Scholar 

  • Milner, A. M., K. Khamis, T. J. Battin, J. E. Brittain, N. E. Barrand, L. Fureder, S. Cauvy-Fraunie, G. M. Gislason, D. Jacobsen, D. M. Hannah, A. J. Hodson, E. Hood, V. Lencioni, J. S. Olafsson, C. T. Robinson, M. Tranter & L. E. Brown, 2017. Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci U S A 114: 9770–9778. https://doi.org/10.1073/pnas.1619807114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modenutti, B., M. Bastidas Navarro, N. Martyniuk & E. Balseiro, 2018. Melting of clean and debris‐rich ice differentially affect nutrients, dissolved organic matter and bacteria respiration in the early ontogeny of the newly formed proglacial Ventisquero Negro Lake (Patagonia Argentina). Freshwater Biology.

  • Modenutti, B., N. Martyniuk, M. Bastidas Navarro & E. Balseiro, 2023. Glacial Influence Affects Modularity in Bacterial Community Structure in Three Deep Andean North-Patagonian Lakes. Microbial ecology1–12.

  • Muyzer, G., E. C. De Waal & A. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59: 695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niño-García, J. P., C. Ruiz-González & P. A. Del Giorgio, 2016. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. The ISME Journal 10: 1755–1766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noges, T., R. Laugaste, P. Noges & I. Tonno, 2007. Critical N: P ratio for cyanobacteria and N 2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe European Large Lakes Ecosystem changes and their ecological and socioeconomic impacts. Springer, 77–86.

  • Ofek, M., Y. Hadar & D. Minz, 2012. Ecology of root colonizing Massilia (Oxalobacteraceae). PloS One 7: e40117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. Package ‘vegan.’ Community Ecology Package, Version 2: 1–295.

    Google Scholar 

  • Paerl, H., 2017. The cyanobacterial nitrogen fixation paradox in natural waters. F1000Research 6.

  • Pfankuch, D., 1975. Stream reach inventory and channel stability evaluation. Report of United States Department of Agriculture Forest Service, Region 1, Missoula. Montana, USA.

  • Quesada, A. & W. F. Vincent, 2012. Cyanobacteria in the cryosphere: snow, ice and extreme cold Ecology of cyanobacteria II. Springer, 387–399.

  • R Core Team, R., 2013. R: A language and environment for statistical computing.

  • Raiswell, R., D. S. Hardisty, T. W. Lyons, D. E. Canfield, J. D. Owens, N. J. Planavsky, S. W. Poulton & C. T. Reinhard, 2018. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. American Journal of Science 318: 491–526.

    Article  CAS  Google Scholar 

  • Ren, Z. & H. Gao, 2019. Ecological networks reveal contrasting patterns of bacterial and fungal communities in glacier-fed streams in Central Asia. PeerJ 7:e7715 https://doi.org/10.7717/peerj.7715.

  • Ren, Z., H. Gao & J. J. Elser, 2017. Longitudinal variation of microbial communities in benthic biofilms and association with hydrological and physicochemical conditions in glacier-fed streams. Freshwater Science 36: 479–490. https://doi.org/10.1086/693133.

    Article  Google Scholar 

  • Ren, Z., N. Martyniuk, I. A. Oleksy, A. Swain & S. Hotaling, 2019. Ecological stoichiometry of the mountain cryosphere. Frontiers in Ecology and Evolution 7: 360.

    Article  Google Scholar 

  • Risse-Buhl, U., M. Karsubke, J. Schlief, C. Baschien, M. Weitere & M. Mutz, 2012. Aquatic protists modulate the microbial activity associated with mineral surfaces and leaf litter. Aquatic Microbial Ecology 66: 133–147.

    Article  Google Scholar 

  • Ruiz, L., E. Berthier, M. Viale, P. Pitte & M. H. Masiokas, 2017. Recent geodetic mass balance of Monte Tronador glaciers, northern Patagonian Andes. The Cryosphere 11: 619–634.

    Article  Google Scholar 

  • Ruiz-González, C., J. P. Niño-García & P. A. Del Giorgio, 2015. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecology Letters 18: 1198–1206.

    Article  PubMed  Google Scholar 

  • Shetty, S. A. & L. Lahti, 2019. Microbiome data science. Journal of Biosciences 44: 1–6.

    Article  Google Scholar 

  • Simpson, Z. P., R. W. McDowell, L. M. Condron, M. D. McDaniel, H. P. Jarvie & J. M. Abell, 2021. Sediment phosphorus buffering in streams at baseflow: a meta-analysis. Journal of Environmental Quality 50: 287–311.

    Article  CAS  PubMed  Google Scholar 

  • Snook, D. L. & A. M. Milner, 2001. The influence of glacial runoff on stream macroinvertebrate communities in the Taillon catchment, French Pyrénées. Freshwater Biology 46: 1609–1623.

    Article  Google Scholar 

  • Wilhelm, L., G. A. Singer, C. Fasching, T. J. Battin & K. Besemer, 2013. Microbial biodiversity in glacier-fed streams. ISME J 7: 1651–1660. https://doi.org/10.1038/ismej.2013.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm, L., K. Besemer, C. Fasching, T. Urich, G. A. Singer, C. Quince & T. J. Battin, 2014. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ Microbiol 16: 2514–2524. https://doi.org/10.1111/1462-2920.12392.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Sampling was conducted with permission IF-2022-07173030-APN-DRPN#APNAC by Administración Parques Nacionales, Argentina. This work was supported by grants FONCyT2017-1940 to EB, FONCyT2018-1563 to BM and FONCyT2020-0383 to EB and UNComahue B-236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Bastidas Navarro.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Handling Editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 441 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, E., Bastidas Navarro, M., Martyniuk, N. et al. Glacial recession in Andean North-Patagonia (Argentina): microbial communities in benthic biofilms of glacier-fed streams. Hydrobiologia 850, 3965–3979 (2023). https://doi.org/10.1007/s10750-023-05279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05279-3

Keywords

Navigation