Skip to main content
Log in

How does phytoplankton respond to hygrophyte decomposition during the inundation period?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We simulated the decomposition of 3 dominant hygrophytes (i.e., Artemisia selengensis Turcz, Carex cinerascens Kukenth, and Phalaris arundinacea Linn) in Lake Poyang under inundation. Plant decomposition significantly altered physical and chemical variables, such as increasing turbidity and nutrients. The species numbers of cyanobacteria, diatoms, chlorophytes, and total phytoplankton significantly decreased in the A. selengensis and P. arundinacea treatments. The diversity of phytoplankton, which is mirrored by the Margalef diversity index, significantly decreased due to A. selengensis and P. arundinacea decomposition. Furthermore, A. selengensis might have a negative effect on phytoplankton diversity measured by the Shannon H index. With a large increase in nutrients, the competition mode among species shifted to light competition, which was probably unfavorable to species weakly competitive for light, resulting in diversity loss. The total densities increased in all 3 treatments, and the cryptophyte and euglenophyte densities increased significantly due to A. selengensis and P. arundinacea decomposition. This phenomenon was likely caused by the direct (assimilation and utilization) and indirect effects of dissolved organic matter release. However, the effects of C. cinerea decomposition on phytoplankton were weaker. Therefore, more attention should be given to plant decomposition under inundation in Lake Poyang due to the established phytoplankton responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  • Abonyi, A., E. Acs, A. Hidas, I. Grigorszky, G. Varbiro, G. Borics & K. T. Kiss, 2018. Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biology 63: 456–472.

    Article  Google Scholar 

  • Agawin, N. S. R., C. M. Duarte & S. Agusti, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45: 591–600.

    Article  CAS  Google Scholar 

  • Anderson, J. T. & L. M. Smith, 2002. The effect of flooding regimes on decomposition of Polygonum pensylvanicum in playa wetlands (Southern Great Plains, USA). Aquat Bot 74: 97–108.

    Article  Google Scholar 

  • Anderson, N. J., 2000. Diatoms, temperature and climatic change. European Journal of Phycology 35: 307–314.

    Google Scholar 

  • Bärlocher, F., 2005. Leaching. In: Graca, M.A.S., F. Bärlocher & Gessner, M. (Eds.), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht, pp. 33–36.

  • Bergfur, J. & N. Friberg, 2012. Trade-offs between fungal and bacterial respiration along gradients in temperature, nutrients and substrata: experiments with stream derived microbial communities. Fungal Ecology 51: 46–52.

    Article  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J. S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Article  Google Scholar 

  • Borics, G., J. Gorgenyi, I. Grigorszky, Z. Laszlo-Nagy, B. Tothmeresz, E. Krasznai & G. Varbiro, 2014. The role of phytoplankton diversity metrics in shallow lake and river quality assessment. Ecol Indic 45: 28–36.

    Article  CAS  Google Scholar 

  • Brauer, V. S., M. Stomp & J. Huisman, 2012. The nutrient-load hypothesis: patterns of resource limitation and community structure driven by competition for nutrients and light. American Naturalist 179: 721–740.

    Article  Google Scholar 

  • Brooks, M. E., K. Kristensen, K. J. Benthem, A. Magnusson, C. W. Berg, A. Nielsen & B. M. Bolker, 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9: 378–400.

    Article  Google Scholar 

  • Bucior, A., B. Rippey, Y. McElarney & R. Douglas, 2021. Evaluating macrophytes as indicators of anthropogenic pressures in rivers in Ireland. Hydrobiologia 848: 1087–1099.

    Article  Google Scholar 

  • Burson, A., M. Stomp, E. Greenwell, J. Grosse & J. Huisman, 2018. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99: 1108–1118.

    Article  Google Scholar 

  • Cao, J., Z. S. Chu, Y. L. Du, Z. Y. Hou & S. R. Wang, 2016. Phytoplankton dynamics and their relationship with environmental variables of Lake Poyang. Hydrology Research 47: 249–260.

    Article  Google Scholar 

  • Carvalho, C., L. U. Hepp, C. Palma-Silva & E. F. Albertoni, 2015. Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53: 1–9.

    Article  CAS  Google Scholar 

  • Chadwick, M. A. & A. D. Huryn, 2003. Effect of a whole-catchment N addition on stream detritus processing. Journal of the North American Benthological Society 22: 194–206.

    Article  Google Scholar 

  • Christensen, D. L., S. R. Carpenter, K. L. Cottingham, S. E. Knight, J. P. LeBouton, D. E. Schindler, N. Voichick, J. J. Cole & M. L. Pace, 1996. Pelagic responses to changes in dissolved organic carbon following division of a seepage lake. Limnology and Oceanography 41: 553–559.

    Article  CAS  Google Scholar 

  • Dokulil, M. T., 1984. Assessment of components controlling phytoplankton photosynthesis and bacterioplankton production in a shallow, alkaline, turbid lake (Neusiedlersee, Austria). Internationale Revue Der Gesamten Hydrobiologie 69: 679–727.

    Article  Google Scholar 

  • Dokulil, M. T. & J. Padisak, 1994. Long-term compositional response of phytoplankton in a shallow, turbid environment, Neusiedlersee (Austria/Hungary). Hydrobiologia 275: 125–137.

    Article  Google Scholar 

  • Fee, E. J., R. E. Hecky, S. E. M. Kasian & D. R. Cruikshank, 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnology and Oceanography 41: 912–920.

    Article  CAS  Google Scholar 

  • Feng, W. J., L. G. Xu, X. L. Wang, H. Y. Li & J. H. Jiang, 2016. Response of Carex cinerascens populations to groundwater level gradients in the Poyang Lake wetland. Acta Ecologica Sinica 36: 5109–5115 (Abstract in English).

  • Ge, G., A. N. Zhao, Y. Y. Zhong & Z. Q. Wu, 2011. Patterns of dominant populations of plants in islets of Poyan Lake. Wetland Science 9: 19–25 (Abstract in English).

  • Goncalves, J. F. J., J. S. Franca, A. O. Medeiros, C. A. Rosa & M. Callisto, 2006. Leaf breakdown in a tropical stream. International Review of Hydrobiology 91: 164–177.

    Article  CAS  Google Scholar 

  • Gu, J., Y. Qin, X. Wang, J. Y. Ma, Z. H. Guo, L. J. Zou & X. H. Shen, 2018. Changes in inundation frequency in Poyang Lake and the response of wetland vegetation. Acta Ecologica Sinica 38: 7718–7726 (Abstract in English).

  • Harpole, W. S., L. L. Sullivan, E. M. Lind, J. Firn, P. B. Adler, E. T. Borer, J. Chase, P. A. Fay, Y. Hautier, H. Hillebrand, A. S. MacDougallm, E. W. Seabloom, R. Williams, J. D. Bakker, M. W. Cadotte, E. J. Chaneton, C. J. Chu, E. E. Cleland, C. D’Antonio, K. F. Davies, D. S. Gruner, N. Hagenah, K. Kirkman, J. M. H. Knops, K. J. La Pierre, R. L. McCulley, J. L. Moore, J. W. Morgan, S. M. Prober, A. C. Risch, M. Schuetz, C. J. Stevens & P. D. Wragg, 2016. Addition of multiple limiting resources reduces grassland diversity. Nature 537: 93–96.

    Article  CAS  Google Scholar 

  • Hautier, Y., P. A. Niklaus & A. Hector, 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324: 636–638.

    Article  CAS  Google Scholar 

  • Heisler, J., P. M. Glibert, J. M. Burkholder, D. M. Anderson, W. Cochlan, W. C. Dennison, Q. Dortch, C. J. Gobler, C. A. Heil, E. Humphries, A. Lewitus, R. Magnien, H. G. Marshall, K. Sellner, D. A. Stockwell, D. K. Stoecker & M. Suddleson, 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13.

    Article  CAS  Google Scholar 

  • Horppila, J. & L. Nurminen, 2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research 37: 4468–4474.

    Article  CAS  Google Scholar 

  • Hu, H. J. & Y. X. Wei, 2006. The Freshwater Algae of China: Systematics, Science Press, Beijing (in Chinese), Taxonomy and Ecology:

    Google Scholar 

  • Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  • Hutchens, J. J. & J. B. Wallace, 2002. Ecosystem linkages between southern Appalachian headwater streams and their banks: leaf litter breakdown and invertebrate assemblages. Ecosystems 5: 80–91.

    Article  Google Scholar 

  • Interlandi, S. J. & S. S. Kilham, 2001. Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82: 1270–1282.

    Article  Google Scholar 

  • Ji, W. T., 2017. The landform, hydrology, and vegetation in Lake Poyang, Science Press, Beijing (in Chinese):

    Google Scholar 

  • Jochimsen, M. C., R. Kümmerlin & D. Straile, 2012. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecology Letters 16: 81–89.

    Article  Google Scholar 

  • Jones, R. I., 1992. The influence of humic substances on lacustrine planktonic food-chains. Hydrobiologia 229: 73–91.

    Article  CAS  Google Scholar 

  • Kissman, C. E. H., C. E. Williamson, K. C. Rose & J. E. Saros, 2013. Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing. Limnology and Oceanography 58: 867–880.

    Article  CAS  Google Scholar 

  • Korner, S. & A. Nicklisch, 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862–871.

    Article  Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.

    Article  Google Scholar 

  • Lecerf, A. & E. Chauvet, 2008. Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology 9: 598–605.

    Article  Google Scholar 

  • Lim, J. H. & C. W. Lee, 2017. Effects of eutrophication on diatom abundance, biovolume and diversity in tropical coastal waters. Environmental Monitoring and Assessment 189: 432–441.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Lu, S. Y., P. Y. Zhang, G. Yu, W. P. Chu & C. S. Xiang, 2005. The contaminants release rule of Zizania caduciflora, Phragmites austrails and Eichhornia crassipes. China Environmental Science 25: 554–557.

    CAS  Google Scholar 

  • Ma, T. T., L. L. Xiong, D. W. Zhang, K. Y. Li, Z. J. Hu & Z. S. Wu, 2021. Effects of decomposition of three plants on water quality during inundation period in Lake Poyang. Journal of Lake Science 33: 1389–1399(Abstract in English).

  • McCauley, E. & J. Downing, 1991. Different effects of phosphorus and nitrogen on chlorophyll concentration in oligotrophic and eutrophic lakes. Canadian Journal of Fisheries and Aquatic Sciences 48: 2552–2553.

    Google Scholar 

  • Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. de Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni & D. H. Wall, 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7: 584–600.

    Article  Google Scholar 

  • Moore, J. C., K. McCann & H. Seta¨la¨ & P. C. De Ruiter, 2003. Top-down is Bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84: 846–857.

    Article  Google Scholar 

  • Olson, J. S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331.

    Article  Google Scholar 

  • Padisk, J. & L. Naselli-Flores, 2021. Phytoplankton in extreme environments: importance and consequences of habitat permanency. Hydrobiologia 848: 157–176.

    Article  Google Scholar 

  • Passerini, M. D., M. B. Cunha-Santino & I. Bianchini, 2016. Oxygen availability and temperature as driving forces for decomposition of aquatic macrophytes. Aquatic Botany 130: 1–10.

    Article  CAS  Google Scholar 

  • Pope, R. J., A. M. Gordon & N. K. Kaushik, 1999. Leaf litter colonization by invertebrates in the littoral zone of a small oligotrophic lake. Hydrobiologia 392: 99–112.

    Article  Google Scholar 

  • Qi, M. X., H. P. Wang & J. Chen, 2017. Decomposition of Phragmites australis and Typha angustifolia and their effects on the water quality in winter and spring. Journal of Lake Sciences 29: 420–429 (Abstract in English).

  • R Core Team, 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

  • Schindler, D., 1978. Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnology and Oceanography 23: 478–486.

    Article  Google Scholar 

  • Shankman, D., B. D. Keim & J. Song, 2006. Flood frequency in China’s Poyang Lake region: trends and teleconnections. International Journal of Climatology 26: 1255–1266.

    Article  Google Scholar 

  • Shen, R. J., X. H. Gu, H. H. Chen, Z. G. Mao, Q. F. Zeng & E. Jeppesen, 2021. Silver carp (Hypophthalmichthys molitrix) stocking promotes phytoplankton growth by suppression of zooplankton rather than through nutrient recycling: an outdoor mesocosm study. Freshwater Biology 66: 1074–1088.

    Article  CAS  Google Scholar 

  • Stevens, C. J., N. B. Dise, J. O. Mountford & D. J. Gowing, 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303: 1876–1879.

    Article  CAS  Google Scholar 

  • Traving, S. J., O. Rowe, N. M. Jakobsen, H. Sørensen, J. Dinasquet, C. A. Stedmon, A. Andersson & L. Riemann, 2017. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Frontiers in Microbiology 8: 351.

    Article  Google Scholar 

  • Velthuis, M., S. Kosten, R. Aben, G. Kazanjian, S. Hilt, E. T. Peeters, E. van Donk & E. S. Bakker, 2018. Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial. Global Change Biology 24: 5231–5242.

    Article  Google Scholar 

  • Vitousek, P. M., D. R. Turner, W. J. Parton & R. L. Sanford, 1994. Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology 75: 418–429.

    Article  Google Scholar 

  • Wang, L. Z., Q. J. Liu, C. W. Hu, R. J. Liang, J. C. Qiu & Y. Wang, 2018. Phosphorus release during decomposition of the submerged macrophyte Potamogeton crispus. Limnology 19: 355–366.

    Article  CAS  Google Scholar 

  • Wang, X. L., L. G. Xu, R. R. Wan & Y. W. Chen, 2016. Seasonal variations of soil microbial biomass within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Catena 137: 483–493.

    Article  CAS  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Article  Google Scholar 

  • Wetzel, R. G., 1983. Limnology, Saunders, Philadelphia:

    Google Scholar 

  • Williamson, C. E., D. P. Morris, M. L. Pace & A. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795–803.

    Article  CAS  Google Scholar 

  • Wu, Z. S., Y. J. Cai, X. Liu, C. P. Xu, Y. W. Chen & L. Zhang, 2013. Temporal and spatial variability of phytoplankton in Lake Poyang: the largest freshwater lake in China. Journal of Great Lakes Research 39: 476–483.

    Article  Google Scholar 

  • Wu, Z. S., H. He, Y. J. Cai, L. Zhang & Y. W. Chen, 2014. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze connected lake. Hydrobiologia 732: 61–70.

    Article  Google Scholar 

  • Wu, Z. S., J. T. Liu, J. C. Huang, Y. J. Cai, Y. W. Chen & K. Y. Li, 2019. Do the key factors determining phytoplankton growth change with water level in China’s largest freshwater lake? Ecological Indicators 107: 105675.

    Article  Google Scholar 

  • Wu, Z. S., D. W. Zhang, Y. J. Cai, X. L. Wang, L. Zhang & Y. W. Chen, 2017. Water quality assessment based on the water quality index method in Lake Poyang: The largest freshwater lake in China. Scientific Reports 7: 1–10.

    Article  Google Scholar 

  • Xie, Y. J., Y. H. Xie, H. Y. Xiao, X. S. Chen & F. Li, 2019. The effects of simulated inundation duration and frequency on litter decomposition: a one-year experiment. Limnologica 74: 8–13.

    Article  CAS  Google Scholar 

  • Xu, J. Y. & X. L. Wang, 2018. Change of contents of nitrogen and phosphorus in the water during decomposition process of shoot and leaf residues of three kinds of typical plants in Poyang Lake under two kinds of temperatures. Wetland Science 16: 266–272 (Abstract in English).

  • Yuan, D. H., X. J. Guo, L. Wen, L. S. He, J. G. Wang & J. Q. Li, 2015. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis. Environmental Pollution 204: 152–160.

    Article  CAS  Google Scholar 

  • Zhang, G. S., X. B. Yu, Y. Liu, H. Zhang, Q. J. Zhang, Y. Li & H. L. Duan, 2018. Accumulation effect of litter decomposition and water level on carbon and nitrogen in shallow lake water of Lake Poyang. Journal of Lake Science 30: 668–679 (Abstract in English).

  • Zhu, H. H. & B. Zhang, 1997. The Lake Poyang, University of Science & Technology of China Press, Hefei (in Chinese):

    Google Scholar 

Download references

Acknowledgements

We thank PLWER for providing the foundation for this experiment. This study was financially supported by the National Natural Science Foundation of China (41977195) and the Science and Technology Project of Water Conservancy Department of Jiangxi Province, China (202022YBKT02 and 202223YBKT29).

Funding

Funding was provided by the National Natural Science Foundation of China (Grant No. 41977195) and the Science and Technology Project of Water Conservancy Department of Jiangxi Province, China (202022YBKT02 and 202223YBKT29).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoshi Wu or Kuanyi Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Julie Coetzee

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Ma, T., Xiong, L. et al. How does phytoplankton respond to hygrophyte decomposition during the inundation period?. Hydrobiologia 850, 51–63 (2023). https://doi.org/10.1007/s10750-022-05038-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05038-w

Keywords

Navigation