Skip to main content
Log in

The influence of humic substances on lacustrine planktonic food chains

  • DOM as an energy source
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Humic substances (HS) might influence planktonic food chains in lakes in two ways: 1) by altering the physical or chemical environment and thus modifying autotrophic primary production and the dependent food chains; 2) by acting as a direct carbon/energy source for food chains.

HS compete with phytoplankton for available quanta underwater and this effect is seen in the reduced euphotic zone depth in lakes with high concentrations of HS. Thus potential photosynthetic production is lower in the presence of HS. However, this effect can be offset in small lakes in which the depth of mixing is also reduced when HS concentrations are high. Complexation by HS of important nutrients such as iron and phosphorus may also restrict primary production.

Evidence is accumulating that photosynthetic primary production is insufficient to support measured metabolic activity in humic lakes, which implies that metabolism of allochthonous HS underpins much of the observed activity. Studies of bacterial abundance and growth in the presence of HS support the view that bacteria are the most significant utilisers of HS. This use is apparently facilitated by photolysis of HS, particularly by short wavelength radiation. Bacteria are grazed by both micro-zooplankton (heterotrophic and mixotrophic flagellates and ciliates) and macrozooplankton. It is within this microbial community that the food chains derived from autotrophic and allotrophic sources interact. These effects of HS on food chains are discussed in relation to possible implications for the response of different lake types to eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G. R., D. M. McKnight, R. L. Wershaw & P. MacCarthy (eds), 1985. Humic substances in soil, sediment and water. J. Wiley & Sons, N.Y., 692 pp.

    Google Scholar 

  • Amador, J. A., M. Alexander & R. G. Zika, 1989. Sequential photochemical and microbial degradation of organic molecules bound to humic acid. Appl. envir. Microbiol. 55: 2843–2849.

    CAS  Google Scholar 

  • Anderson, M. A. & F. M. M. Morel, 1982. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 27: 789–813.

    CAS  Google Scholar 

  • Arvola, L., 1984. Vertical distribution of primary production and phytoplankton in two small lakes with different humus concentration in southern Finland. Holarct. Ecol. 7: 390–398.

    CAS  Google Scholar 

  • Arvola, L. & P. Kankaala, 1989. Winter and spring variability in phyto- and bacterioplankton in lakes with different water colour. Aqua fenn. 19: 29–39.

    CAS  Google Scholar 

  • Arvola, L., K. Salonen & M. Rask, 1990. Chemical budgets for a small dystrophic lake in southern Finland. Limnologica (Berlin) In Press.

  • Auclair, J. C., P. Brassard & P. Couture, 1985. Effects of two molecular weight fractions on phosphorus cycling in natural phytoplankton communities. Wat. Res. 19: 1447–1453.

    CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.-A. MeyerReil & F. Thingstad, 1983. The ecological role of watercolumn microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bell, R. T. & J. Kuparinen, 1984. Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl. envir. Microbiol. 45: 1709–1721.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    CAS  Google Scholar 

  • Bird, D. F. & J. Kalff, 1989. Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol. Oceanogr. 34: 155–162.

    Google Scholar 

  • Birge, E. A. & C. Juday, 1927. The organic content of the water of small lakes. Proc. Amer. Phil. Soc. 66: 357–372.

    Google Scholar 

  • Boraas, M. E., K. W. Estep, P. W. Johnson & J. McN. Sieburth, 1988. Phagotrophic phototrophs: The ecological significance of mixotrophy. J. Protozool. 35: 249–252.

    Google Scholar 

  • Bowling, L. C., 1990. Heat contents, thermal stabilities and Birgean wind work in dystrophic Tasmanian lakes and reservoirs. Aust. J. Mar. Freshwat. Res. 41: 429–441.

    Google Scholar 

  • Bowling, L. C. & K. Salonen, 1990. Heat uptake and resistance to mixing in small humic forest lakes in southern Finland. Aust. J. Mar. Freshwat. Res. 41: 747–759.

    Google Scholar 

  • Brassard, P. & J. C. Auclair, 1984. Orthophosphate uptake rate constants are mediated by the 103–104 molecular weight fraction in Shield lakewater. Can. J. Fish. aquat. Sci. 41: 166–173.

    CAS  Google Scholar 

  • Bratbak, G. & T. F. Thingstad, 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 25: 23–30.

    Google Scholar 

  • Button, D. K., 1985. Kinetics of nutrient-limited transport and microbial growth. Microb. Rev. 49: 270–297.

    CAS  Google Scholar 

  • Caron, D. A., J. C. Goldman & M. R. Dennett, 1988. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159: 27–40.

    Google Scholar 

  • Chrost, R. J., U. Münster, H. Rai, D. Albrecht, P. K. Witzel & J. Overbeck, 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11: 223–242.

    CAS  Google Scholar 

  • Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080–1090.

    CAS  Google Scholar 

  • Cole, J. J., W. H. McDowell & G. E. Likens, 1984. Sources and molecular weight of ‘dissolved’ organic carbon in an oligotrophic lake. Oikos 42: 1–9.

    CAS  Google Scholar 

  • Cotner, J. B. & R. T. Heath, 1990. Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol. Oceanogr. 35: 1175–1181.

    CAS  Google Scholar 

  • Coveney, M. F., 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos, 38: 8–20.

    CAS  Google Scholar 

  • Croome, R. L. & P. A. Tyler, 1988. Phytoflagellates and their ecology in Tasmanian polyhumic lakes. Hydrobiologia 161: 245–253.

    Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limmnol. Oceanogr. 29: 298–310.

    CAS  Google Scholar 

  • De Haan, H., 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (The Netherlands). Freshwat. Biol. 4: 301–309.

    Google Scholar 

  • De Haan, H., 1977. Effect of benzoate on microbial decomposition of fulvic acid in Tjeukemeer (The Netherlands). Limnol. Oceanogr. 22: 38–44.

    Google Scholar 

  • De Haan, H., 1992. Impacts of environmental changes on the biogeochemistry of aquatic humic substances. Hydrobiologia 229: 59–71.

    Google Scholar 

  • De Haan, H. & T. De Boer, 1979. Seasonal variations of fulvic acids, amino acids, and sugars in Tjeukemeer, The Netherlands. Arch. Hydrobiol. 85: 30–40.

    Google Scholar 

  • De Haan, H. & T. De Boer, 1986. Geochemical aspects of aqueoua iron, phosphorus and dissolved organic carbon in the humic Lake Tjeukemeer, The Netherlands. Freshwat. Biol. 16: 661–672.

    Google Scholar 

  • De Haan, H., R. I. Jones & K. Salonen, 1987. Does ionic strength affect the configuration of aquatic humic substances, as indicated by gel filtration? Freshwat. Biol. 17: 453–459.

    Google Scholar 

  • De Haan, H., R. I. Jones & K. Salonen, 1990. Abiotic transformations of iron and phosphate in humic lake water, revealed by double isotope labelling and gel filtration. Limnol. Oceanogr. 35: 35: 491–497.

    Google Scholar 

  • Eloranta, P., 1978. Light penetration in different types of lakes in Central Finland. Holarct. Ecol. 1: 362–366.

    Google Scholar 

  • Estep, K. W., P. G. Davis, M. D. Keller & J. McN. Sieburth, 1986. How important are oceanic algal nanoflagellates in bacterivory? Limnol. Oceanogr. 31: 646–650.

    Google Scholar 

  • Forsyth, D. J. & M. R. James, 1984. Zooplankton grazing on lake bacterioplankton and phytoplankton. J. Plankton Res. 6: 803–810.

    Google Scholar 

  • Francko, D. A., 1986. Epilimnetic phosphorus cycling: Influence of humic materials and iron coexisting major mechanisms. Can. J. Fish. aquat. Sci. 43: 302–310.

    CAS  Google Scholar 

  • Francko, D. A. & R. T. Heath, 1979. Functionally distinct classes of complex phosphorus compounds in lake water. Limnol. Oceanogr. 24: 463–473.

    CAS  Google Scholar 

  • Francko, D. A. & R. T. Heath, 1982. UV-sensitive complex phosphorus: association with dissolved humic material and iron in a bog lake. Limnol. Oceanogr. 27: 564–569.

    CAS  Google Scholar 

  • Geller, A., 1985a. Light-induced conversion of refractory, high molecular weight lake water constituents. Schweiz. Z. Hydrol. 47: 21–26.

    CAS  Google Scholar 

  • Geller, A., 1985b. Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz. Z. Hydrol. 47: 27–44.

    CAS  Google Scholar 

  • Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.

    Google Scholar 

  • Guildford, S. J., F. P. Healey & R. E. Hecky, 1987. Depression of primary production by humic matter and suspended sediment in limnocorral experiments at Southern Indian Lake, Northern Manitoba. Can. J. Fish. aquat. Sci. 45: 1408–1417.

    Google Scholar 

  • Glide, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.

    Google Scholar 

  • Hakala, I., 1974. Sedimentaatio Pääjarvessä. Luonnon Tutkija 78: 108–110.

    Google Scholar 

  • Havens, K. E. III., 1989. Seasonal succession in the plankton of a naturally acidic, highly humic lake in Northeastern Ohio, USA. J. Plankton Res. 11: 1321–1327.

    Google Scholar 

  • Hessen, D. O., 1985a. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.

    CAS  Google Scholar 

  • Hessen, D. O., 1985b. Filtering structures and particle size selection in coexisting cladocerans. Oecologia 66: 368–372.

    Google Scholar 

  • Hessen, D. O. & A. K. Schartau, 1988. Seasonal and spatial overlap between cladocerans in humic lakes. Int. Revue ges. Hydrobiol. 73: 379–405.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: pool sizes and cycling through zooplankton. Limnol. Oceanogr. 35: 84–99.

    CAS  Google Scholar 

  • Ilmavirta, V., 1984. The ecology of flagellated phytoplankton in brown-water lakes. Verb. int. Ver. Limnol. 22: 817–821.

    Google Scholar 

  • Ilmavirta, V., 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270.

    CAS  Google Scholar 

  • Jackson, T. A. & R. E. Hecky, 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can. J. Fish. aquat. Sci. 37: 2300–2317.

    Google Scholar 

  • Järnefelt, H., 1958. On the typology of the northern lakes. Verb. int. Ver. Limnol. 13: 228–235.

    Google Scholar 

  • Jones, A. K. & R. C. Cannon, 1986. The release of microalgal photosynthate and associated bacterial uptake and heterotrophic growth. Br. phycol. J. 21: 341–358.

    Google Scholar 

  • Jones, R. I., 1977a. Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). II. Phytoplankton production and its chief determinants. J. Ecol. 65: 561–577.

    CAS  Google Scholar 

  • Jones, R. I., 1977a. Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). III. Interspecific competition in relation to irradiance and temperature. J. Ecol. 65: 579–586.

    Google Scholar 

  • Jones, R. I., 1990. Phosphorus transformations in the epilimnion of humic lakes: biological uptake of phosphate. Freshwat. Biol. 23: 323–337.

    CAS  Google Scholar 

  • Jones, R. I. & L. Arvola, 1984. Light penetration and some related characteristics in small forest lakes in southern Finland. Verh. int. Ver. Limnol. 22: 811–816.

    Google Scholar 

  • Jones, R. I. & K. Salonen, 1985. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland. Holarct. Ecol. 8: 133–140.

    Google Scholar 

  • Jones, R. I., K. Salonen & H. De Haan, 1988. Phosphorus transformations in the epilimnion of humic lakes: abiotic interactions between dissolved humic materials and phosphate. Freshwat. Biol. 19: 357–369.

    CAS  Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

    Google Scholar 

  • Kieber, D. J., J. McDaniel & K. Mopper, 1989. Photochemical source of biological substrates in seawater: implications for carbon cycling. Nature 341: 637–639.

    CAS  Google Scholar 

  • Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 401 pp.

    Google Scholar 

  • Latja, R., 1974. Pääjärven eläinplankton. Luonnon Tutkija 78: 153–156.

    Google Scholar 

  • Makarewicz, J. C., G. E. Likens & M. J. Jordan, 1985. Interactions between bacteria and phytoplankton. In G. E. Likens (ed.), An Ecosystem Approach to Aquatic Ecology. Springer-Verlag, New York: 323–324.

    Google Scholar 

  • Miles, C. J. & P. L. Brezonik, 1981. Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Envir. Sci. Technol. 15: 1089–1095.

    CAS  Google Scholar 

  • Pedros-Alio, C. & T. D. Brock, 1983. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwat. Biol. 13: 227–239.

    Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1045.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience 24: 499–504.

    Google Scholar 

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

    Google Scholar 

  • Prakash, A., M. A. Rashid, A. Jensen & D. V. Subba Rao, 1973. Influence of humic substances on the growth of marine phytoplankton: diatoms. Limnol. Oceanogr. 18: 516–524.

    Google Scholar 

  • Pratt, J. R. & J. D. Chappell, 1989. Abundance and feeding of microheterotrophic flagellates from a eutrophic lake. Hydrobiologia 182: 165–169.

    Google Scholar 

  • Provasoli, L., 1963. Organic regulation of phytoplankton fertility. In The Sea, Vol. 2. Wiley-Interscience, New York: 165–219.

    Google Scholar 

  • Ramberg, L., 1979. Relations between phytoplankton and light climate in two Swedish forest lakes. Int. Revue ges. Hydrobiol. 64: 749–782.

    Google Scholar 

  • Rask, M., A. Heinänen, K. Salonen, L. Arvola, I. Bergström, M. Liukkonen & A. Ojala, 1986. The limnology of a small, naturally acidic, highly humic lake. Arch. Hydrobiol. 106: 351–371.

    Google Scholar 

  • Runner, F., 1963. Fundamentals of limnology. 3rd edn. University of Toronto Press, Toronto, 307 pp.

    Google Scholar 

  • Ryhänen, R., 1968. Die Bedeutung der Humussubstanzen im Stoffhaushalt der Gewässer Finnlands. Mitt. int. Ver. Limnol. 14: 168–178.

    Google Scholar 

  • Salonen, K., 1981. The ecosystem of the oligotrophic Lake Pääjarvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.

    Google Scholar 

  • Salonen, K. & L. Arvola, 1988. A radiotracer study of zooplankton grazing in two small humic lakes. Verh. int. Ver. Limnol. 23: 462–469.

    Google Scholar 

  • Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia 68: 246–253.

    Google Scholar 

  • Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.

    Google Scholar 

  • Salonen, K. & T. Tulonen, 1990. Photochemical and biological transformations of dissolved humic substances. (Abstract). Verb. int. Ver. Limnol. 24: 294.

    Google Scholar 

  • Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.

    Google Scholar 

  • Salonen, K., L. Arvola, H. De Haan, T. Hammar, S. Jokinen, R. Jones, P. Kankaala, A. Lehtovaara, A. Ojala & U. Smolander, 1987. Progress reports: Research on humic lakes. Lammi Notes 14: 6–7.

    Google Scholar 

  • Salonen, K., T. Kairesalo, L. Arvola, T. Hammar, P. Kankaala, A. Lehtovaara, A. Ojala & T. Tulonen, 1990. Progress reports: Food chains of humic lakes. Lammi Notes 17: 1.

    Google Scholar 

  • Salonen, K., L. Arvola, T. Tulonen, T. Hammar, T.-R. Metsälä, P. Kankaala & U. Münster, 1992a. Planktonic food chains of a highly humic lake. I. A mesocosm experiment during the spring primary production maximum. Hydrobiologia 229: 125–142.

    CAS  Google Scholar 

  • Salonen, K., P. Kankaala, T. Tulonen, T. Hammar, M. James, T.-R. Metsälä & L. Arvola, 1992b. Planktonic food chains of a highly humic lake. II. A mesocosm experiment in summer during dominance of heterotrophic processes. Hydrobiologia 229: 143–157.

    CAS  Google Scholar 

  • Sarvala, J., V. Ilmavirta, L. Paasivirta & K. Salonen, 1981. The ecosystem of the oligotrophic Lake Pääjärvi 3. Secondary production and an ecological energy budget of the lake. Verh. int. Ver. Limnol. 21: 422–427.

    Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1988. Phagotrophic phytoflagellates. Adv. microb. Ecol. 10: 167–192.

    Google Scholar 

  • Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In C. D. Sandgren (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 9–104.

    Google Scholar 

  • Satoh, Y. & H. Abe, 1987. Dissolved organic matter in colored water from mountain bog pools in Japan. II. Biological decomposability. Arch. Hydrobiol. 111: 25–35.

    Google Scholar 

  • Schell, D. M., 1983. Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in Arctic food webs. Science, 219: 1068–1071.

    Google Scholar 

  • Sederholm, H., A. Mauranen & L. Montonen, 1973. Some observations on the microbial degradation of humus substances in water. Verh. int. Ver. Limnol. 18: 1301–1305.

    Google Scholar 

  • Sepers, A. B. J., 1977. The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia 52: 39–54.

    CAS  Google Scholar 

  • Sherr, E. B., 1988. Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351.

    CAS  Google Scholar 

  • Sherr, B. F., E. B. Sherr & C. S. Hopkinson, 1988. Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159: 19–26.

    Google Scholar 

  • Siegel, A., 1971. Metal-organic interactions in the marine environment. In S. D. Faust & J. V. Hunder (eds), Organic Compounds in Aquatic Environment. Marcel Dekker: 265–295.

  • Sleigh, M. A., 1989. Protozoa and other protists. Edward Arnold, London, 342 pp.

    Google Scholar 

  • Stahel, H.-H., K. Moaledj & J. Overbeck, 1979. On the degradation of dissolved organic molecules from Plussee by oligocarbophilic bacteria. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 95–104.

    Google Scholar 

  • Steinberg, C. & G. F. Baltes, 1984. Influence of metal compounds on fulvic acid/molybdenum blue reactive phosphate associations. Arch. Hydrobiol. 100: 61–71.

    CAS  Google Scholar 

  • Steinberg, C. & A. Herrmann, 1981. Utilization of dissolved metal organic compounds by freshwater microorganisms. Verb. int. Ver. Limnol. 21: 231–235.

    CAS  Google Scholar 

  • Steinberg, C. & U. Muenster, 1985. Geochemistry and ecological role of humic substances in lake water. In G. R. Aiken et al. (eds), Humic Substances in Soil, Sediment and Water. J. Wiley & Sons, N.Y.: 104–145.

    Google Scholar 

  • Stevens, R. J. & B. M. Stewart, 1982. Concentration, fractionation and characterization of soluble organic phosphorus in river water entering Lough Neagh. Wat. Res. 16: 1507–1519.

    CAS  Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1981. Dissolved humic materials: Photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol. 92: 265–286.

    CAS  Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1982. Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwat. Biol. 12: 369–380.

    CAS  Google Scholar 

  • Strome, D. J. & M. C. Miller, 1978. Photolytic changes in dissolved humic substances. Verb. int. Ver. Limnol. 20: 1248–1254.

    Google Scholar 

  • Sundh, I., 1989. Characterization of phytoplankton extracellular products (PDOC) and their subsequent uptake by heterotrophic organisms in a mesotrophic fores lake. J. Plankton Res. 11: 463–486.

    CAS  Google Scholar 

  • Tailing, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133–149.

    Google Scholar 

  • Thienemann, A., 1925. Die Binnengewässer Mitteleuropas. Die Binnengewässer, 1, 255 pp.

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    CAS  Google Scholar 

  • Tranvik, L. J., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J. Plankton Res. 11: 985–1000.

    Google Scholar 

  • Tranvik, L. J. & M. G. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

    CAS  Google Scholar 

  • Tranvik, L. J., K. G. Porter & J. McN. Sieburth, 1989. Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476.

    Google Scholar 

  • Vadstein, O., B. O. Harkjerr, A. Jensen, Y. Olsen & H. Reinertsen, 1989. Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria. Limnol. Oceanogr. 34: 840–855.

    CAS  Google Scholar 

  • Veen, A., 1990. Phagotrophy by Dynobryon: a survival strategy in a low-nutrient environment? (Abstract). Br. phycol. J. 25: 98–99.

    Google Scholar 

  • Visser, S. A., 1984. Seasonal changes in the concentration and colour of humic substances in some aquatic environments. Freshwat. Biol. 14: 79–87.

    CAS  Google Scholar 

  • Wall, D. & F. Briand, 1979. Response of lake phytoplankton communities to in situ manipulations of light intensity and colour. J. Plankton Res. 1: 103–112.

    Google Scholar 

  • Watanabe, Y. & C. R. Goldman, 1984. Heterotrophic bacterial community in oligotrophic Lake Tahoe. Verh. int. Ver. Limnol. 22: 584–590.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd edn. W.B. Saunders Co., Philadelphia.

    Google Scholar 

  • Williams, P. J. leB., 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 5: 1–28.

    Google Scholar 

  • Wright, R. T., 1984. Dynamics of pools of dissolved organic carbon. In J. E. Hobbie & P. J. leB. Williams (eds), Heterotrophic Activity in the Sea. Proc. NATO ARI, Cascais, Portugal, 1981. Plenum, NY: 121–154.

    Google Scholar 

  • Wright, R. T., 1988. A model for short-term control of the bacterioplankton by substrate and grazing. Hydrobiologia 159: 111–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.I. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229, 73–91 (1992). https://doi.org/10.1007/BF00006992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006992

Key words:

Navigation