Skip to main content

Advertisement

Log in

Water temperature stability modulates insect thermal responses at spring fens

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Thermal responses of spring insects are poorly understood, yet critically important because temperature regimes of spring habitats can be modified by climate warming. Here, we examined the species-specific responses of aquatic insects to variation in water temperature at 43 undamaged spring fens. Temperature was recorded for 1 year using dataloggers and used to model the abundance of taxa representing spring habitat specialists and generalists, as well as traits indicative of species sensitivity to climate change. Sites differed significantly in thermal conditions, forming a gradient that was largely independent of other principal environmental gradients in the spring fens. Significant responses to temperature parameters were found for 25 of the 56 taxa analysed, showing two types of species associations, with stable or variable thermal conditions. The species significantly responding to temperature variables by an increase or decrease in their abundance were primarily spring specialists, often associated with thermally stable sites with higher winter temperatures. The number of climate-sensitive traits within the insect assemblage was also higher at these sites. Thus, any reduction of water temperature stability may negatively affect many spring specialists and species vulnerable to climate changes. Our results highlight the importance of thermal conditions, particularly temperature stability, for spring insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets are available from the corresponding author on reasonable request.

Code availability

Custom codes are available from the corresponding author on reasonable request.

References

  • Barquín, J. & R. G. Death, 2004. Patterns of invertebrate diversity in streams and freshwater springs in Northern Spain. Archiv Für Hydrobiologie 161: 329–349.

    Article  Google Scholar 

  • Barquín, J. & R. G. Death, 2011. Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range? Journal of Limnology 70: 134–146.

    Article  Google Scholar 

  • Barquín, J. & M. Scarsbrook, 2008. Management and conservation strategies for coldwater springs. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 580–591.

    Article  Google Scholar 

  • Becker, R. A., J. M. Chambers & Wilks, A. R., 1988. The New S Language. Wadsworth & Brooks/Cole.

  • Bedford, B. L. & K. S. Godwin, 2003. Fens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23: 608–629.

    Article  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Caldwell, T. G., B. D. Wolaver, T. Bongiovanni, J. P. Pierre, S. Robertson, C. Abolt & B. R. Scanlon, 2020. Spring discharge and thermal regime of a groundwater dependent ecosystem in an arid karst environment. Journal of Hydrology 587: 124947.

    Article  Google Scholar 

  • Cantonati, M., R. Gerecke & E. Bertuzzi, 2006. Springs of Alps—sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562: 59–96.

    Article  CAS  Google Scholar 

  • Cantonati, M., L. Füreder, R. Gerecke, I. Jüttner & E. J. Cox, 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Science 31: 463–480.

    Article  Google Scholar 

  • Conti, L., A. Schmidt-Kloiber, G. Grenouillet & W. Graf, 2014. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721: 297–315.

    Article  CAS  Google Scholar 

  • Cook, R. D., 1977. Detection of influential observation in linear regression. Technometrics 19: 15–18.

    Google Scholar 

  • Cornes, R., G. van der Schrier, E. J. M. van den Besselaar & P. D. Jones, 2018. An ensemble version of the E-OBS temperature and precipitation datasets, Journal of Geophysical Research: Atmosphere, 123 pp

  • Domisch, S., M. B. Araújo, N. Bonada, S. U. Pauls, S. C. Jähnig & P. Haase, 2013. Modelling distribution in European stream macroinvertebrates under future climates. Global Change Biology 3: 752–762.

    Article  Google Scholar 

  • Ebner, J. N., D. Ritz & S. von Fumetti, 2019. Comparative proteomics of stenotopic caddisfly Crunoecia irrorata identifies acclimation strategies to warming. Molecular Ecology 28: 4453–4469.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Pascual, E., B. Jiménez-Alfaro, M. Hájek, T. E. Díaz & H. W. Pritchard, 2015. Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Folia Geobotanica 50: 293–301.

    Article  Google Scholar 

  • Fischer, J., F. Fischer, S. Schnabel, R. Wagner & H. W. Bohle, 1998. Die Quellenfauna der Hessischen Mittelgebirgsregion. Besiedlungsstruktur, Anpassungsmechanismen und Habitatbindung der Makroinvertebraten am Beispiel von Quellen aus dem Rheinischen Schiefergebirge und der osthessischen Buntsandsteinlandschaft. In Botosaneanu, L. (ed), Studies in Crenobiology: The Biology of Springs and Springsbrooks Backhuys Publishers, Leiden: 183–199.

    Google Scholar 

  • Forster, J., A. G. Hirst & D. Atkinson, 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America 109: 19310–19314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friberg, N., J. B. Dybkjær, J. S. Olafsson, G. M. Gislason, S. E. Larsen & T. L. Lauridsen, 2009. Relationships between structure and function in streams contrasting in temperature. Freshwater Biology 54: 2051–2068.

    Article  CAS  Google Scholar 

  • Gerecke, R., M. Cantonati, D. Spitale, E. Stur & S. Wiedenbrug, 2011. The challenges of long-term ecological research in springs in the northern and southern Alps: indicator groups, habitat diversity, and medium-term change. Journal of Limnology 70: 168–187.

    Article  Google Scholar 

  • Gerecke, R., P. Martin & T. Gledhill, 2018. Water mites (Acari: Parasitengona: Hydrachnidia) as inhabitants of groundwater-influenced habitats-considerations following an update of Limnofauna Europaea. Limnologica 69: 81–93.

    Article  Google Scholar 

  • Gräsle, W. & C. Beierkuhnlein, 1999. Temperaturen und Strahlungshaushalt an Waldquellen. In Beierkuhnlein, C. & T. Gollan (eds), Ökologie silikatischer Waldquellen in Mitteleuropa Bayreuth, Germany: 77–85.

    Google Scholar 

  • Haidekker, A. & D. Hering, 2008. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology 42: 463–481.

    Article  Google Scholar 

  • Hájek, M., M. Horsák, P. Hájková & D. Dítě, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8: 97–114.

    Article  Google Scholar 

  • Hájek, M., J. Roleček, K. Cottenie, K. Kintrová, M. Horsák, A. Poulíčková, P. Hájková, M. Fránková & D. Dítě, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.

    Article  Google Scholar 

  • Hájek, M., V. Horsáková, P. Hájková, R. Coufal, D. Dítě, T. Němec & M. Horsák, 2020. Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Science of the Total Environment 719: 134693.

    Article  PubMed  Google Scholar 

  • Hannigan, E. & M. Kelly-Quinn, 2012. Composition and structure of macroinvertebrate communities in contrasting open-water habitats in Irish peatlands: implications for biodiversity conservation. Hydrobiologia 1: 19–28.

    Article  Google Scholar 

  • Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Munoz, M. J. López-Rodríguez, T. Huber & W. Graf, 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquatic Sciences 71: 3–14.

    Article  Google Scholar 

  • Horsák, M. & N. Cernohorsky, 2008. Mollusc diversity patterns in Central European fens: hotspots and conservation priorities. Journal of Biogeography 35: 1215–1225.

    Article  Google Scholar 

  • Horsák, M., M. Hájek, D. Dítě & L. Tichý, 2006. Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? Journal of Molluscan Studies 73: 53–60.

    Article  Google Scholar 

  • Horsák, M., V. Rádková, V. Syrovátka, J. Bojková, V. Křoupalová, J. Schenková & J. Zajacová, 2015. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. Journal of Biogeography 42: 2112–2121.

    Article  Google Scholar 

  • Horsák, M., V. Polášková, M. Zhai, J. Bojková, V. Syrovátka, V. Šorfová, J. Schenková, M. Polášek, T. Peterka & M. Hájek, 2018. Spring-fen habitat islands in a warming climate: partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Science of the Total Environment 634: 355–365.

    Article  PubMed  Google Scholar 

  • Horsák, M., V. Horsáková, M. Polášek, R. Coufal, P. Hájková & M. Hájek, 2021. Spring water table depth mediates within-site variation of soil temperature in groundwater-fed mires. Hydrological Processes 35: e14293.

    Article  Google Scholar 

  • IS ARROW (Assessment and Reference Reports of Water Monitoring), 2014, Praha, Český hydrometeorologický ústav. http://hydro.chmi.cz/isarrow (accessed 1 February 2021)

  • Ivković, M., M. Miliša, V. Baranov & Z. Mihaljevič, 2015. Environmental drivers of biotic traits and phenology patterns of Diptera assemblages in karst springs: the role of canopy uncovered. Limnologica 54: 44–57.

    Article  Google Scholar 

  • Jyväsjärvi, J., R. Virtanen, J. Ilmonen, L. Paasivirta & T. Muotka, 2018. Identifying taxonomic and functional surrogates for spring biodiversity conservation. Conservation Biology 32: 883–893.

    Article  PubMed  Google Scholar 

  • Keppel, G., S. Anderson, C. Williams, S. Kleindorfer & C. O’Connell, 2017. Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape. PLoS One 12: e0183106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Küry, D., V. Lubini & P. Stucki, 2017. Temperature patterns and factors governing thermal response in high elevation springs of the Swiss Central Alps. Hydrobiologia 793: 185–197.

    Article  Google Scholar 

  • Lindegaard, C., 1995. Chironomidae (Diptera) of European cold springs and factors influencing their distribution. Journal of Kansas Entomological Society 68: 108–131.

    Google Scholar 

  • Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64: 375–383.

    Article  Google Scholar 

  • McFadden, D., 1979. Quantitative methods for analysing travel behaviour of individuals: Some recent developments. In Hensher, D. A. & P. R. Stopher (eds), Behavioural Travel Modelling Croom Helm, London: 279–318.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2019. vegan: community ecology package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan

  • Omelková, M., V. Syrovátka, V. Křoupalová, V. Rádková, J. Bojková, M. Horsák, M. Zhai & J. Helešic, 2013. Dipteran assemblages of spring fens closely follow the gradient of groundwater mineral richness. Canadian Journal of Fisheries and Aquatic Sciences 70: 689–700.

    Article  Google Scholar 

  • Orendt, C., 2000. The chironomid communities in woodland springs and spring brooks, severely endangered and impacted ecosystems in a lowland region of eastern Germany (Diptera: Chironomidae). Journal of Insect Conservation 4: 79–91.

    Article  Google Scholar 

  • Petruželová, J., J. Bojková, L. Hubáčková, V. Šorfová, V. Syrovátka & M. Horsák, 2020. Factors explaining community contrast of Trichoptera assemblages at insular Western Carpathian spring fens to the adjacent headwaters. International Review of Hydrobiology 105: 20–32.

    Article  Google Scholar 

  • Podeniene, V., 2002. Records on new and little-known larvae of the family Limoniidae (Diptera, Nematocera) from Lithuania. Acta Zoologica Lituanica 12: 294–308.

    Article  Google Scholar 

  • Polášková, V., J. Schenková, M. Bílková, M. Poláková, V. Šorfová, M. Polášek, J. Schlaghamerský & M. Horsák, 2020. Drivers of small-scale Diptera distribution in aquatic-terrestrial transition zones of spring fens. Wetlands 40: 235–247.

    Article  Google Scholar 

  • Rádková, V., J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & M. Horsák, 2014. The role of dispersal mode and habitat specialization in metacommunity structuring of aquatic macroinvertebrates at isolated spring fens. Freshwater Biology 59: 2256–2267.

    Article  Google Scholar 

  • Rádková, V., V. Polášková, J. Bojková, V. Syrovátka & M. Horsák, 2017. Environmental filtering of aquatic insects in spring fens: patterns of species-specific responses related to specialist-generalist categorization. Hydrobiologia 797: 159–170.

    Article  Google Scholar 

  • Reyer, C. P. O., S. Leuzinger, A. Rammig, A. Wolf, R. P. Bartholomeus, A. Bonfante, F. de Lorenzi, M. Dury, P. Gloning, R. Abou Jaoudé, T. Klein, T. M. Kuster, M. Martins, G. Niedrist, M. Riccardi, G. Wohlfahrt, P. de Angelis, G. de Dato, L. François, A. Menzel & M. Pereira, 2013. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology 19: 75–89.

    Article  PubMed  Google Scholar 

  • Royston, P., 1982. An extension of Shapiro and Wilk’s W test for normality to large samples. Applied Statistics 31: 115–124.

    Article  Google Scholar 

  • Sandin, L., A. Schmidt-Kloiber, JCh. Svenning & E. Jeppesen N. & Friberg, 2014. A trait-based approach to assess climate change sensitivity of freshwater invertebrates across Swedish ecoregions. Current Zoology 60: 221–232.

    Article  Google Scholar 

  • Schenková, J., V. Polášková, M. Bílková, J. Bojková, V. Syrovátka, M. Polášek & M. Horsák, 2020. Climatically induced temperature instability of groundwater-dependent habitats will suppress cold-adapted Clitellata species. International Review of Hydrobiology 105: 85–93.

    Article  Google Scholar 

  • Schmidt-Kloiber, A. & D. Hering, 2015. www.freshwaterecology.info - an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282.

    Article  Google Scholar 

  • Signorell, A. et al. 2020. DescTools: Tools for descriptive statistics. R package version 0.99.36. https://cran.r-project.org/web/packages/DescTools/index.html

  • Sjöberg, Y., E. Coon, K. A. B. Sannel, R. Pannetier, D. Harp, A. Frampton, S. L. Painter & S. W. Lyon, 2016. Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling. Water Resour Res 52: 1591–1606.

    Article  Google Scholar 

  • Šorfová, V. & V. Syrovátka, 2018. The Chironomidae of the Western Carpathian helocrenes: Metacommunity structuring and its drivers in unique habitats. Journal of Limnology 77: 177–186.

    Google Scholar 

  • Šorfová, V., M. Poláková, J. Bojková, V. Polášková, J. Schenková & M. Horsák, 2022. Environmental heterogeneity, dispersal mode and habitat specialisation modify within-site beta diversity of spring macroinvertebrates. International Review of Hydrobiology 107: 145–153.

    Article  Google Scholar 

  • Šupina, J., J. Bojková & D. S. Boukal, 2020. Warming erodes individual-level variability in life history responses to predation risk in larvae of the mayfly Cloeon dipterum. Freshwater Biology 65: 2211–2223.

    Article  Google Scholar 

  • Ujvárosi, L., P. L. Kolcsár & E. Török, 2011. An annotated list of Ptychopteridae (Insecta, Diptera) from Romania, with notes on the individual variability of Ptychoptera albimana (Fabricius, 1787). Entomologica Romanica 16: 39–45.

    Google Scholar 

  • Vallenduuk, H. J. & H. K. M. Moller Pillot, 2007. Chironomidae I: Larvae of the Netherlands and Adjacent Lowlands, KNNV Publishing, Zeist, The Netherlands, General Ecology and Tanypodinae:

    Google Scholar 

  • van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. Journal of Kansas Entomological Society 68: 4–17.

    Google Scholar 

  • von Fumetti, S. & L. Blattner, 2017. Faunistic assemblages of natural springs in different areas in the Swiss National Park: a small-scale comparison. Hydrobiologia 793: 175–184.

    Article  Google Scholar 

  • von Fumetti, S., F. Bieri-Wigger & P. Nagel, 2017. Temperature variability and its influence on macroinvertebrate assemblages of alpine springs. Ecohydrology 10: 1–9.

    Google Scholar 

  • Wassen, M. J., H. Olde Venterink, E. D. Lapshina & F. Tanneberger, 2005. Endangered plants persist under phosphorus limitation. Nature 437: 547–550.

    Article  CAS  PubMed  Google Scholar 

  • Wickham, H., 2016. ggplot2: elegant graphics for data analysis, Springer, New York:

    Book  Google Scholar 

  • Williams, D. D., 1991. Life history traits of aquatic arthropods in springs. Memoirs of the Entomological Society of Canada 155: 107–124.

    Article  Google Scholar 

  • Zhang, D., 2020. rsq: R-Squared and Related Measures. R package version 2.0. https://CRAN.R-project.org/package=rsq

Download references

Acknowledgements

We would like to thank Vít Syrovátka for the help in the field and chironomid identification and Ondřej Hájek for the map preparation. The study was financially supported by the Czech Science Foundation (P505/20-17305S).

Funding

Funding was provided by the Czech Science Foundation (P505/20-17305S).

Author information

Authors and Affiliations

Authors

Contributions

Field work, sample processing, and insect identification were performed by VP, JB, VŠ, and MH. Data analysis was performed by VP and MP. All authors contributed to the study conception and design. Most of the manuscript was written by VP and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Vendula Polášková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Handling editor: Sally A. Entrekin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2022_5008_MOESM1_ESM.pdf

Appendix A: Air temperature time series (exported from the European E-OBS database) for the years 2000–2020 for 43 sites used in the study. Macroinvertebrate sampling seasons (numbers indicate the number of sites sampled in a given season) and season of water temperature recording (marked as “loggers”) are highlighted by grey lanes. Supplementary file1 (PDF 434 kb)

10750_2022_5008_MOESM2_ESM.pdf

Appendix B: Cluster analysis of the study fens based on temperature variables using Ward’s method and Euclidean distances. Each cluster is marked by a number displayed in Appendix C. Supplementary file2 (PDF 126 kb)

Appendix C (PDF 150 kb)

Appendix D (PDF 169 kb)

Online Resource 1 (PDF 372 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polášková, V., Bojková, J., Polášek, M. et al. Water temperature stability modulates insect thermal responses at spring fens. Hydrobiologia 849, 4693–4706 (2022). https://doi.org/10.1007/s10750-022-05008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05008-2

Keywords

Navigation