Skip to main content
Log in

The influence of thermal history on upper thermal limits of two species of riverine insects: the stonefly, Aphanicerca capensis, and the mayfly, Lestagella penicillata

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The upper thermal limits of two cold-water stenotherms: the mayfly, Lestagella penicillata (Teloganodidae), and the stonefly, Aphanicerca capensis (Notonemouridae), were determined from six rivers in the Western Cape, South Africa. Limits were estimated using the Critical Thermal Method (expressed as Critical Thermal maximum) and the Incipient Lethal Temperature method (expressed as Incipient Lethal Upper Limit). Hourly water temperatures recorded in these rivers were used to characterise thermal signatures. Median CTmax and 96 h ILUT varied significantly amongst rivers for both species (≤5.7°C for CTmax and ≤4.0°C for 96 h ILUT) and variation was similar for both species. Differences in water temperature amongst rivers during the experimental period (spring) were insufficient (<2.0°C) to confirm the relationship between upper thermal limits and thermal history, expressed as an averaging statistic derived from in situ water temperatures. Greatest thermal range was over the warm summer period (>8.0°C) and it is likely that this is when thermal history may influence thermal limits. Maximum Weekly Allowable Temperature thresholds averaged for all rivers were lower for A. capensis (17.0°C) compared to L. penicillata (19.0°C). Both species have life cycles that allow them to avoid the thermally stressful summer period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armour, C. L., 1991. Guidance for Evaluating and Recommending Temperature Regimes to Protect Fish. United States Fish & Wildlife Services. Biological Report 90. Washington DC.

  • Barnard, K. H., 1932. South African mayflies. Transactions of the Royal Society of South Africa 20: 201–259.

    Article  Google Scholar 

  • Barnard, K. H., 1934. South African stone-flies (Perlaria), with descriptions of new species. Annals of the South African Museum 30: 511–548.

    Google Scholar 

  • Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof, 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva.

    Google Scholar 

  • Brungs, W. A. & B. R. Jones, 1977. Temperature Criteria for Freshwater Fish: Protocol and Procedures. US Environmental Protection Agency Environmental Research Laboratory. Report EPA-600/3-77-061. Duluth, Minnesota.

  • Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51: 1389–1406.

    Article  Google Scholar 

  • Colwell, R. K., 1974. Predictability, constancy and contingency of periodic phenomena. Ecology 55: 1148–1153.

    Article  Google Scholar 

  • Crisp, D. T., A. M. Mathews & D. F. Westlake, 1982. The temperatures of three different small streams in northwest England. Hydrobiologia 35: 305–323.

    Article  Google Scholar 

  • Dallas, H. F, 2005. River Health Programme: Site characterisation field-manual and field-data sheets. National Biomonitoring Programme Report Series No 18. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria.

  • Dallas, H. F., 2008. Water temperature and riverine ecosystems: an overview of knowledge and approaches for assessing biotic response, with special reference to South Africa. Water SA 34: 393–404.

    Google Scholar 

  • Dallas, H. F., 2013. Ecological status assessment in Mediterranean rivers: complexities and challenges in developing tools for assessing ecological status and defining reference conditions. Hydrobiologia 719: 483–507.

    Article  Google Scholar 

  • Dallas, H. F. & Z. A. Ketley, 2011. Upper thermal limits of aquatic macroinvertebrates: comparing critical thermal maxima with 96-LT50 values. Journal of Thermal Biology 36: 322–327.

    Article  Google Scholar 

  • Dallas, H. F. & N. A. Rivers-Moore, 2011. Micro-scale heterogeneity in water temperature. Water SA 37: 505–512.

    Google Scholar 

  • Dallas, H. F. & N. A. Rivers-Moore, 2012. Critical thermal maxima of aquatic macroinvertebrates: towards identifying bioindicators of thermal alteration. Hydrobiologia 679: 61–76.

    Article  Google Scholar 

  • Dallas, H. F. & N. A. Rivers-Moore, 2014. Ecological consequences of global climate change for freshwater ecosystems in South Africa. South African Journal of Science 110: 48–58.

    Article  Google Scholar 

  • Day, B., 2005. The distribution of the palaeorelictual invertebrate fauna of South Africa. Table Mountain Fund Project No. ZA 5061 and 5061.1. World Wide Fund for Nature, Stellenbosch

  • Ernst, M., T. Beitinger & K. Stewart, 1984. Critical maxima of nymphs of three plecoptera species from an Ozark foothill stream. Freshwater Invertebrate Biology 3: 80–85.

    Article  Google Scholar 

  • Gaufin, A. R. & S. Hern, 1971. Laboratory studies on tolerance of aquatic insects to heated waters. Journal of the Kansas Entomological Society 44: 240–245.

    Google Scholar 

  • Hoffmann, A., A. Chown & S. L. Clusella-Trullas, 2013. Upper thermal limits in terrestrial ectotherms: how constrained are they? Functional Ecology 27: 934–949.

    Article  Google Scholar 

  • Houghton, D. C. & L. Shoup, 2014. Seasonal changes in the critical thermal maxima of four Species of aquatic insects (Ephemeroptera, Trichoptera). Environmental Entomology 43: 1059–1066.

    Article  PubMed  Google Scholar 

  • Huryn, A., 1996. Temperature-dependent growth and life cycle of Deleatidium (Ephemeroptera: Leptophlebiidae) in two high-country streams in New Zealand. Freshwater Biology 36: 351–361.

    Article  Google Scholar 

  • Koopman, K. R., F. P. L. Collas, G. van der Velde & W. C. E. P. Verberk, 2016. Oxygen can limit heat tolerance in freshwater gastropods: differences between gill and lung breathers. Hydrobiologia 763: 301–312.

    Article  Google Scholar 

  • Le Roux, A, 2013. An ecological assessment of the Holsloot River, Western Cape, South Africa. MSc Thesis, University of South Africa, South Africa.

  • Martin, W. J. & J. B. Gentry, 1974. Effect of thermal stress on dragonfly nymphs. In Gibbons, J. W. & R. R. Sharitz (eds), Thermal Ecology. Atomic Energy Commission, Washington: 133–145.

  • Martin, W. J., C. T. Garten & J. B. Gentry, 1976. Thermal tolerances of dragonfly nymphs. I. Sources of variation in estimating Critical Thermal maximum. Physiological Zoology 49: 200–205.

    Article  Google Scholar 

  • Maheu, A., N. L. Poff & A. St-Hilaire, 2015. A classification of stream water temperature regimes in the conterminous USA. River research and applications. doi:10.1002/rra.2906.

    Google Scholar 

  • McKie, B. G., P. S. Cranston & R. G. Pearson, 2004. Gondwanan mesotherms and cosmopolitan eurytherms: effects of temperature on the development and survival of Australian Chironomidae (Diptera) from tropical and temperate populations. Marine and Freshwater Research 55: 759–768.

    Article  Google Scholar 

  • Moulton, S. R., T. L. Beitinger, K. W. Stewart & R. J. Currie, 1993. Upper temperature tolerance of four species of caddisflies (Insecta: Trichoptera). Journal of Freshwater Ecology 8: 193–198.

    Article  Google Scholar 

  • Nelitz, M. A., E. A. MacIsaac & R. M. Peterman, 2007. A science-based approach for identifying temperature-sensitive streams for rainbow trout. North American Journal of Fisheries Management 27: 405–424.

    Article  Google Scholar 

  • Perry, W. B., E. F. Benfield, S. A. Perry & J. R. Webster, 1987. Energetics, growth, and production of a leaf-shredding stonefly in an Appalachian mountain stream. Journal of the North American Benthological Society 6: 12–25.

    Article  Google Scholar 

  • Ratcliffe, S. G., 2009. Disturbance and temporal variability in invertebrate assemblages in two South African rivers. PhD Thesis, University of Cape Town, Cape Town.

  • Rajaguru, S., 2002. Critical thermal maximum of seven estuarine fishes. Journal of Thermal Biology 27: 125–128.

    Article  Google Scholar 

  • Rezende, E. L., L. E. Castañeda & M. Santos, 2014. Tolerance landscapes in thermal ecology. Functional Ecology 28: 799–809.

    Article  Google Scholar 

  • Rivers-Moore, N. A., S. Mantel & H. F. Dallas, 2012. Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa. Water SA 38: 167–176.

    Article  Google Scholar 

  • Rivers-Moore, N. A., H. F. Dallas & C. Morris, 2013a. Towards setting environmental water temperature guidelines: a South African example. Journal of Environmental Management 128: 380–392.

    Article  PubMed  Google Scholar 

  • Rivers-Moore, N. A., H. F. Dallas & V. Ross-Gillespie, 2013b. Life history does matter in assessing potential ecological impacts of thermal changes on aquatic macroinvertebrates. Rivers Research and Application 29: 1100–1109.

    Article  Google Scholar 

  • Ross-Gillespie, V., 2014. Effects of water temperature on life-history traits of selected South African aquatic insects. PhD Thesis. University of Cape Town, Cape Town.

  • Schulze, R. E. 2011. A perspective on climate change and the South African water sector. Water Research Commission Report 1843/2/11. Water Research Commission, Pretoria.

  • Sear, D. A., P. D. Armitage & F. H. Dawson, 1999. Groundwater dominated rivers. Hydrological Processed 13: 255–276.

    Article  Google Scholar 

  • Stevens, D. M., 2009. Systematics of the Notonemouridae (Plecoptera) of southern Africa. PhD Thesis, University of Cape Town, Cape Town.

  • Stewart, B. A., P. G. Close, P. A. Cook & P. M. Davies, 2013. Upper thermal tolerances of key taxonomic groups of stream invertebrates. Hydrobiologia 718: 131–140.

    Article  CAS  Google Scholar 

  • Sullivan, K., D. J. Martin, R. D. Cardwell, J. E. Toll & S. Duke, 2000. An Analysis of the Effects of Temperature on Salmonids of the Pacific Northwest with Implications for Selecting Temperature Criteria. Sustainable Ecosystems Institute, Portland, Oregon.

    Google Scholar 

  • Vannote, R. & B. Sweeney, 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Verberk, W. C. E. P. & D. T. Bilton, 2013. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biology Letters 9: 1–4.

    Article  Google Scholar 

  • Verberk, W. C. E. P. & P. Calosi, 2012. Hypoxia decreases upper thermal limits but enhances heat resistance in subsequent exposures in the aquatic nymphs of the gill breathing damselfly Calopteryx virgo (Linnaeus, 1758). Journal of Thermal Biology 37: 224–229.

    Article  Google Scholar 

  • Ward, J., 1985. Thermal characteristics of running waters. Hydrobiologia 125: 31–46.

    Article  Google Scholar 

  • Ward, J. & J. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Revue of Entomology 27: 97–117.

    Article  Google Scholar 

  • Wellborn, G. & J. Robinson, 1996. Effects of a thermal effluent on macroinvertebrates in a central Texas reservoir. American Midland Naturalist 136: 110–120.

    Article  Google Scholar 

  • Wishart, M. J. & J. A. Day, 2002. Endemism in the freshwater fauna of the south-western Cape, South Africa. Verhandlungen der Internationalen Vereinigung fűr Theoretische und Angewandte Limnologie 28: 1–5.

    Google Scholar 

Download references

Acknowledgments

The Water Research Commission provided funding for this research (project K5/2182)—thanks to Mr Bonani Madikizela for facilitation of this research and Mrs Una Wium for administrative support. Thanks to CapeNature and Kirstenbosch National Botanical Gardens for collecting permits and for allowing access to the study sites, and the department of Biological Sciences, University of Cape Town, for providing laboratory facilities. Miss Jody-Lee Reizenberg assisted with the thermal experiments while an intern for the Freshwater Research Centre. Thank you to our reviewers for their insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen F. Dallas.

Additional information

Handling editor: Marcelo S. Moretti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallas, H.F. The influence of thermal history on upper thermal limits of two species of riverine insects: the stonefly, Aphanicerca capensis, and the mayfly, Lestagella penicillata . Hydrobiologia 781, 95–108 (2016). https://doi.org/10.1007/s10750-016-2826-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2826-3

Keywords

Navigation