Skip to main content

Advertisement

Log in

Integrating spatial and temporal patterns of free-living nematodes with physical and chemical environmental traits: implications for coastal ecological monitoring

  • TRENDS IN AQUATIC ECOLOGY IV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Relating biological patterns to the physical environment is increasingly explored in current period of global biodiversity crisis and attempts to identify ecological status. Free-living marine nematodes (FMN) were proposed as ecological indicators, although often under approaches based on developing synthetic indexes of environmental quality, contextually neglecting the crucial issue of their spatial and temporal variability in abundance and diversity, and its relationship with environmental drivers. This study, carried out on the north-eastern coast of India as a region subject to various anthropogenic activities, assessed the patterns of FMN structure, richness, equitability, trophic guilds, life strategy and morphological traits at three sites, three times over 1 year, two beach levels and three sediment layers upto 15 cm deep. Nematode patterns were then related to the amount of sand, silt and clay, organic carbon, and salinity. Each FMN characteristic was largely variable in time and space, being organic carbon and salinity the environmental variables most correlated to such patterns. Monitoring designs suited to capture such variability are recommended to improve the use of FMN as bioindicators. Just relying on unidirectional data to define environmental status is questioned, while it is proposed to consider the Effect of Positional Constraints when assessing ecosystem health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The dataset generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abebe, E., W. Traunspurger & I. Andrássy, 2006. Freshwater Nematodes: Ecology and Taxonomy, CABI Publishing, Wallingford:

    Book  Google Scholar 

  • Ackerly, D. D. & W. K. Cornwell, 2007. A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters 10: 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Ansari, Z. A., B. S. Ingole & A. H. Parulekar, 1984. Macrofauna and Meiofauna of two sandy beaches at Mombasa, Kenya. Indian Journal of Marine Science 13: 187–189.

    Google Scholar 

  • Armenteros, M., A. Ruiz-Abierno, R. Fernández-Garcés, J. A. Pérez-García, L. Díaz-Asencio, M. Vincx & W. Decraemer, 2009. Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuarine, Coastal and Shelf Science 85: 179–189.

    Article  CAS  Google Scholar 

  • Atkins, J. P., D. Burdon, M. Elliott & A. J. Gregory, 2011. Management of the marine environment: integrating ecosystem services and societal benefits with the DPSIR framework in a system approach. Marine Pollution Bulletin 62: 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Balsamo, M., G. Albertelli, V. U. Ceccherelli, R. Coccioni, M. A. Colangelo, M. Curini-Galletti, R. Danovaro, R. D’Addabbo, C. Leonardis, M. Fabiano, F. Frontalini, M. Gallo, C. Gambi, L. Guidi, M. Moreno, A. Pusceddu, R. Sandulli, F. Semprucci, M. A. Todaro & P. Tongiorgi, 2010. Meiofauna of the Adriatic Sea: current state of knowledge and future perspective. Chemistry and Ecology 26: 45–63.

    Article  Google Scholar 

  • Balsamo, M., F. Semprucci, F. Frontalini & R. Coccioni, 2012. Meiofauna as a tool for marine ecosystem biomonitoring. In Cruzado, A. (ed), Marine Ecosystems InTechOpen, Rijecka: 77–104.

    Google Scholar 

  • Barragán, J. M. & M. D. Andrés, 2015. Analysis and trends of the world’s coastal cities and agglomerations. Ocean and Coastal Management 114: 11–20.

    Article  Google Scholar 

  • Benedetti-Cecchi, L., 2001. Beyond BACI: optimization of environmental sampling designs through monitoring and simulation. Ecological Applications 11: 783–799.

    Article  Google Scholar 

  • Bertocci, I., A. Dell’Anno, L. Musco, C. Gambi, V. Saggiomo, M. Cannavacciuolo, M. Lo Martire, A. Passarelli, G. Zazo & R. Danovaro, 2019. Multiple human pressures in coastal habitats: variation of meiofaunal assemblages associated with sewage discharge in a post-industrial area. Science of the Total Environment 655: 1218–1231.

    Article  CAS  PubMed  Google Scholar 

  • Bianchelli, S., E. Buschi, R. Danovaro & A. Pusceddu, 2018. Nematode biodiversity and benthic trophic state are simple tools for the assessment of the environmental quality in coastal marine ecosystems. Ecological Indicators 95: 270–287.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., 2011. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proceeding of the National Academy of Sciences of the United States of America 108: 19473–19481.

    Article  CAS  Google Scholar 

  • Bongers, T., 1990. The Maturity Index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83: 14–19.

    Article  PubMed  Google Scholar 

  • Bongers, T. & M. Bongers, 1998. Functional diversity of nematodes. Applied Soil Ecology 10: 239–251.

    Article  Google Scholar 

  • Bongers, T. & H. Ferris, 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology and Evolution 14: 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Bongers, T., R. Alkemade & G. W. Yeates, 1991. Interpretation of disturbance induced maturity decrease in marine nematode assemblages by means of Maturity Index. Marine Ecology Progress Series 76: 135–142.

    Article  Google Scholar 

  • Borja, A., 2014. Grand challenges in marine ecosystems ecology. Frontiers in Marine Science 1: 1.

    Article  Google Scholar 

  • Borja, A., M. Elliott, J. H. Andersen, A. C. Cardoso, J. Carstensen, J. G. Ferreira, A.-S. Heiskanen, J. C. Marques, J. M. Neto, H. Teixeira, L. Uusitalo, M. C. Uyarra & N. Zampoukas, 2013. Good nvironmental Status of marine ecosystems: what is it and how do we know when we have attained it? Marine Pollution Bulletin 76: 16–27.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan, J. B., 1984. Sediment analysis. In Holme, N. A. & A. D. McIntyre (eds), Methods for the Study of Marine Benthos 2nd ed. Blackwell, Oxford: 41–65.

    Google Scholar 

  • Cairns, J. & J. R. Pratt, 1993. A history of biological monitoring using benthicmacroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates Chapman & Hall, New York: 10–27.

    Google Scholar 

  • Chalcraft, D. R. & W. J. Resetarits, 2003. Mapping functional similarity of predators on the basis of trait similarities. American Naturalist 162: 390–402.

    Article  PubMed  Google Scholar 

  • Charlier, R. H., 1989. Coastal zone: occupance, management and economic competitiveness. Ocean and Shoreline Management 12: 383–402.

    Article  Google Scholar 

  • Coull, B. C., 1973. Estuarine meiofauna—a review, trophic relationships and microbial interactions. In Stevenson, L. H. & R. R. Colwell (eds), Estuarine Microbial Ecology University of South Carolina Press, Columbia: 499–511.

    Google Scholar 

  • Cullen, D., 1973. Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature 242: 323–324.

    Article  Google Scholar 

  • Dalabehera, L., A. Hazra, S. Pattanayak & T. Paul, 2020. The Paleobeach ridges of Digha Coastal Tract, West Bengal, India: observation and implication for sea regression from 500 YBP to 200 YBP. Journal of the Geological Society of India 95: 131–144.

    Article  Google Scholar 

  • Danovaro, R., M. Fabiano & M. Vincx, 1995. Meiofauna response to the Agip Abruzzo oil spill in subtidal sediments of the Ligurian Sea. Marine Pollution Bulletin 30: 133–145.

    Article  CAS  Google Scholar 

  • Danovaro, R., C. Gambi, N. Lampadariou & A. Tselepides, 2008. Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31: 231–244.

    Article  Google Scholar 

  • Danovaro, R., S. Bianchelli, C. Gambi, M. Mea & D. Zeppilli, 2009. α-, β-, γ-, δ- and ε diversity of deep-sea nematodes in canyons and open slopes of Northeast Atlantic and Mediterranean margins. Marine Ecology Progress Series 396: 197–209.

    Article  Google Scholar 

  • Datta, T. K., G. Sivaleela & A. Mohapatra, 2014. First report on the occurrence of free-living marine Nematode Oncholaimellus brevicauda Timm 1969 (Oncholaimidae: Enoplida) from India. Indian Journal of Geo-Marine Sciences 43: 1922–1926.

    Google Scholar 

  • Datta, T. K., A. D. J. Navarrete & A. Mohapatra, 2015. Rhynchonema dighaensis sp. nov. (Monhysterida: Xyalidae): a marine nematode from the Indian coast with an illustrated guide and modified key for species of Rhynchonema Cobb, 1920. Zootaxa 3905: 365–380.

    Article  PubMed  Google Scholar 

  • Datta, T. K., D. M. Miljutin, S. K. Chakraborty & A. Mohapatra, 2016. Cyathoshiva amaleshi gen. n. sp. n. (Nematoda: Cyatholaimidae) from the coast of India. Zootaxa 4126: 577–586.

    Article  PubMed  Google Scholar 

  • Datta, T. K., S. K. Chakraborty & A. Mohapatra, 2017a. First report of Ptycholaimellus macrodentatus (Timm, 1961) (Nematoda: Chromadorida) from Indian coast. Records of the Zoological Survey of India 117: 274–281.

    Article  Google Scholar 

  • Datta, T. K., A. D. J. Navarrete, S. K. Chakraborty & A. Mohapatra, 2017b. First report of Megodontolaimus coxbazari Timm, 1969 (Nematoda: Chromadorida) from Indian coast. Marine Biodiversity 47: 247–253.

    Article  Google Scholar 

  • Du, Y., S. Gao, X. Liu, D. Wang, L. Zhang & J. Ingels, 2018. Meiofauna and nematode community characteristics indicate ecological changes induced by geomorphic evolution: a case study on tidal creek systems. Ecological Indicators 87: 97–106.

    Article  Google Scholar 

  • Eleftheriou, A. & A. McIntyre, 2005. Methods for the Study of Marine Benthos, 3rd ed. Blackwell, Hoboken: 418 pp.

  • Erwin, K. L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17: 71–84.

    Article  Google Scholar 

  • Gheskiere, T., E. Hoste, J. Vanaverbeke, M. Vincx & S. Degraer, 2004. Horizontal zonation patterns and feeding structure of marine nematode assemblages on a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). Journal of Sea Research 52: 211–226.

    Article  Google Scholar 

  • Gheskiere, T., M. Vincx, J. M. Weslawski, F. Scapini & S. Degraer, 2005. Meiofauna as descriptor of tourism-induces changes at sandy beaches. Marine Environmental Research 60: 245–265.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, M., S. Mandal & M. Chatterjee, 2018. Impact of unusual monsoon rainfall in structuring meiobenthic assemblages at Sundarban estuarine system, India. Ecological Indicators 94: 139–150.

    Article  CAS  Google Scholar 

  • Gray, J. & R. Rieger, 1971. A quantitative study of the meiofauna of an exposed sandy beach at Robin Hood’s bay, Yorkshire. Journal of the Marine Biological Association of the United Kingdom 51: 1–19.

    Article  Google Scholar 

  • Grzelak, K., M. Gluchowska, K. Gregorczyk, A. Winogradow & J. M. Weslawski, 2016. Nematode biomass and morphometric attributes as biological indicators of local environmental conditions in Arctic fjords. Ecological Indicators 69: 368–380.

    Article  Google Scholar 

  • Guo, Z. & M. Zhang, 2019. The conservation efficacy of coastal wetlands in China based on landscape development and stress. Ocean and Coastal Management 175: 70–78.

    Article  Google Scholar 

  • Gyedu-Ababio, T. K. & D. Baird, 2006. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicology and Environmental Safety 62: 443–450.

    Article  Google Scholar 

  • Halpern, B. S., M. Frazier, J. Afflerbach, J. S. Lowndes, F. Micheli, C. O’Hara, C. Scarborough & K. A. Selkoe, 2019. Recent pace of change in human impact on the world’s ocean. Scientific Reports 9: 11609.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heip, C., R. Herman & M. Vincx, 1984. Variability and productivity of meiobenthos in the Southern Bight of the North Sea. Rapport et process-verbaux des reunions. Conseil International Pour L’exploration De La Mer 183: 507–521.

    Google Scholar 

  • Heip, C., M. Vincx & G. Vranken, 1985. The ecology of marine nematodes. Oceanography and Marine Biology: an Annual Review 23: 399–489.

    Google Scholar 

  • Higgins, R. P. & H. Thiel, 1988. Introduction to the Study of Meiofauna, Smithsonian Institution Press, Washington, DC:, 486.

    Google Scholar 

  • Hooper, D. J., 1986. Handling, fixing, staining and mounting nematodes. In Southey, J. F. (ed), Laboratory Methods for Work with Plant and Soil Nematodes Her Majesty’s Stationery Office, London: 59–80.

    Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setalä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Ingole, B. S. & A. H. Parulekar, 1998. Role of salinity in structuring the intertidal meiofauna of a tropical estuarine beach: field evidence. Indian Journal of Marine Science 27: 356–361.

    CAS  Google Scholar 

  • Jackson, D. W. T. & A. D. Short, 2020. Sandy Beach Morphodynamics, Elsevier, London:

    Google Scholar 

  • Jana, A. & A. K. Bhattacharya, 2013. Assessment of coastal erosion vulnerability around Midnapur-Balasore coast, eastern India using integrated remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing 41: 675–686.

    Article  Google Scholar 

  • Jellison, R., R. F. Anderson, J. M. Melack & D. Heil, 1996. Organic matter accumulation in sediments of hypersaline Mono Lake during a period of changing salinity. Limnology and Oceanography 41: 1539–1544.

    Article  CAS  Google Scholar 

  • Jensen, P., 1987. Feeding ecology of free-living aquatic nematodes. Marine Ecology Progress Series 35: 187–196.

    Article  Google Scholar 

  • Kotwicki, L., M. De Troch, B. Urban-Malinga, T. Gheskiere & J. M. Weslawski, 2005. Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgoland Marine Research 59: 255–264.

    Article  Google Scholar 

  • Kulkarni, S. S., C. U. Rivonker & U. M. X. Sangodkar, 2003. Role of meiobenthic assemblages in detritus based food chain from estuarine environment of Goa. Indian Journal of Fisheries 50: 465–471.

    Google Scholar 

  • Levin, P. S., M. J. Fogarty, S. A. Murawski & D. Fluharty, 2009. Integrated ecosystem assessments: developing the scientific basis for ecosystem-based management of the ocean. PLoS Biology 7: e1000014.

    Article  Google Scholar 

  • Lindenmayer, D. B. & G. E. Likens, 2011. Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14: 47–59.

    Article  CAS  Google Scholar 

  • Liu, J., H. Yang, M. Zhao & X. H. Zhang, 2014. Spatial distribution patterns of benthic microbial communities along the Pearl Estuary, China. Systematic and Applied Microbiology 37: 578–589.

    Article  PubMed  Google Scholar 

  • Losi, V., M. Moreno, L. Gaozza, L. Vezzulli, M. Fabiano & G. Albertelli, 2013. Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecological Indicators 30: 80–90.

    Article  CAS  Google Scholar 

  • Lucas, K. L. & G. A. Carter, 2013. Change in distribution and composition of vegetated habitats on Horn Island, Mississippi, northern Gulf of Mexico, in the initial five years following hurricane Katrina. Geomorphology 199: 129–137.

    Article  Google Scholar 

  • Marine Fisheries Census, 2010. Part II: West Bengal. Published by The Director, Central Marine Fisheries Research Institute (CMFRI), Kochi, Government of India, Ministry of Agriculture, Department of Animal Husbandary, Dairying & Fisheries, New Delhi.

  • Martínez, M. L., A. Intralawan, G. Vázquez, O. Pérez-Maqueo, P. Sutton & R. Landgrave, 2007. The coasts of our world: ecological, economic and social importance. Ecological Economics 63: 254–272.

    Article  Google Scholar 

  • Martínez, J. G., M. A. Torres, G. dos Santos & T. Moens, 2018. Influence of heavy metals on nematode community structure in deteriorated soil by gold mining activities in Sibutad, southern Philippines. Ecological Indicators 91: 712–721.

    Article  Google Scholar 

  • Mason, N. W. H., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Article  Google Scholar 

  • McIntyre, A. D., 1968. The meiofauna and macrofauna of some tropical beaches. Journal of Zoology 156: 377–392.

    Article  Google Scholar 

  • McLachlan, A. & I. Turner, 1994. The interstitial environment of sandy beaches. Marine Ecology 15: 177–211.

    Article  Google Scholar 

  • McLeod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.

    Article  Google Scholar 

  • McManus, J., 1988. Grain size determination and interpretation. In Tucker, M. (ed), Techniques in Sedimentology Blackwell, Oxford: 63–85.

    Google Scholar 

  • Mirto, S., T. La Rosa, C. Gambi, R. Danovaro & A. Mazzola, 2002. Nematode community response to fish-farm impact in the western Mediterranean. Environmental Pollution 116: 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro, L., W. Traunspurger, K. Roeleveld, F. Lynen & T. Moens, 2018. Direct toxicity of the water-soluble fractions of a crude and a diesel-motor oil on the survival of free-living nematodes. Ecological Indicators 93: 13–23.

    Article  CAS  Google Scholar 

  • Moreno, M., F. Semprucci, L. Vezzulli, M. Balsamo, M. Fabiano & G. Albertelli, 2011. The use of nematodes in assessing the ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators 11: 328–336.

    Article  Google Scholar 

  • Neher, D. A. & B. J. Darby, 2009. General community indices that can be used for analysis of nematodes assemblages. In Wilson, M. & T. Kakouli-Duarte (eds), Nematodes as Environmental Indicators CABI, Oxfordshire: 107–123.

    Chapter  Google Scholar 

  • Niemi, G. J. & M. McDonald, 2004. Application of ecological indicators. Annual Review of Ecology, Evolution, and Systematics 35: 89–111.

    Article  Google Scholar 

  • Panigrahy, P. K., J. Das, S. N. Das & R. K. Sahoo, 1999. Evaluation of the influence of various physico-chemical parameters on coastal water quality, around Orissa, by factor analysis. Indian Journal of Marine Sciences 28: 360–364.

    Google Scholar 

  • Paul, A. K., 2002. Coastal Geomorphology and Environment: Sunadrban Coastal Plain, Kanthi Coastal Plain, Subarnarekha Delta Plain, ACB Publications, Kolkata:

    Google Scholar 

  • Pielou, E. C., 1966. Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology 10: 370–383.

    Article  CAS  PubMed  Google Scholar 

  • Pitchaikani, J., K. Kadharsha & S. Mukherjee, 2016. Current status of seawater quality in Digha (India), northwestern coast of the Bay of Bengal. Environmental Monitoring and Assessment 188: 385.

    Article  PubMed  Google Scholar 

  • Platt, H. M. & R. M. Warwick, 1980. The significance of free-living nematodes to the littoral ecosystem. In: Price, J. H., D. E. G. Irvine & W. F. Farnham (eds), The Shore Environment, vol. 2. Ecoystems. Academic Press, London: 729–759.

  • Platt, H. M. & R. M. Warwick, 1983. Free-living marine nematodes part I, British Enoplids: pictorial key to world genera and notes for the identification of British species. In Kermack, D. M. & R. S. K. Barnes (eds), Synopses of the British Fauna (New Series), vol. 28. Cambridge University Press, Cambridge.

  • Platt, H. M. & R. M. Warwick, 1988. Free-living marine nematodes, Part II, British Chromadorids. In Brill, E. J. & W. Backhuys (eds), Synopses of the British Fauna (New Series), vol. 38. The Linnean Society of London and the Estuarine and Brackish-Water Sciences Association, London.

  • Pusceddu, A., A. Dell’Anno, M. Fabiano & R. Danovaro, 2009. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Marine Ecology Progress Series 375: 41–52.

    Article  CAS  Google Scholar 

  • Qu, W., J. Li, G. Han, H. Wu, W. Song & X. Zhang, 2019. Effect of salinity on the decomposition of soil organic carbon in a tidal wetland. Journal of Soils and Sediments 19: 609–617.

    Article  CAS  Google Scholar 

  • Rao, G. C. & A. Misra, 1986. The meiofauna and macrofauna of Digha beach, West Bengal, India. Records of the Zoological Survey of India 83: 31–49.

    Article  Google Scholar 

  • Rees, H. L., J. L. Hyland, K. Hylland, C. S. L. Mercer Clarke, J. C. Roff & S. Ware, 2008. Environmental Indicators: utility in meeting regulatory needs. An overview. ICES Journal of Marine Science 65: 1381–1386.

    Article  Google Scholar 

  • Rice, J., 2003. Environmental health indicators. Ocean & Coastal Management 46: 235–259.

    Article  Google Scholar 

  • Riemann, F., 1974. On hemi-sessile nematodes with flagelliform tails living in marine soft bottoms and micro-tubes found in deep sea sediments. Mikrofauna Meeresboden 40: 1–15.

    Google Scholar 

  • Riera, R., J. Núñez & M. Del Carmen Brito, 2012. Influence of a freshwater runoff on temporal variations of an intertidal meiofauna assemblage. Vie et Milieu 62: 105–114.

    Google Scholar 

  • Rodríguez, J. G., J. López & E. Jaramillo, 2001. Community structure of the intertidal meiofauna along a gradient of morphodynamic sandy beach types in southern Chile. Revista Chilena De Historial Natural 74: 885–897.

    Google Scholar 

  • Sapir, A., 2021. Why are nematodes so successful extremophiles? Communicative and Integrative Biology 14: 24–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlacher, T. A., D. S. Schoeman, J. Dugan, M. Lastra, A. Jones, F. Scapini & A. McLachlan, 2008. Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Marine Ecology 29(1): 70–90.

    Article  Google Scholar 

  • Schratzberger, M. & J. Ingels, 2018. Meiofauna matters: the roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology 502: 12–25.

    Article  Google Scholar 

  • Schratzberger, M., J. M. Gee, H. L. Rees, S. E. Boyd & C. M. Wall, 2000. The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of the marine environment. Journal of the Marine Biological Association of the United Kingdom 80: 969–980.

    Article  Google Scholar 

  • Schratzberger, M., K. Warr & S. I. Rogers, 2006. Patterns of nematode populations in the southwestern North Sea and their link to other components of the benthic fauna. Journal of Sea Research 55: 113–127.

    Article  Google Scholar 

  • Schratzberger, M., K. Warr & S. I. Rogers, 2007. Functional diversity of nematode communities in the southwestern North Sea. Marine Environmental Research 63: 368–389.

    Article  CAS  PubMed  Google Scholar 

  • Schratzberger, M., R. M. Forster, F. Goodsir & S. Jennings, 2008. Nematode community dynamics over an annual production cycle in the central North Sea. Marine Environmental Research 66: 508–519.

    Article  CAS  PubMed  Google Scholar 

  • Schratzberger, M., N. Lampadariou, P. Somerfield, L. Vandepitte & E. Vanden Berghe, 2009. The impact of seabed disturbance on nematode communities: linking field and laboratory observations. Marine Biology 156: 709–724.

    Article  Google Scholar 

  • Semprucci, F. & M. Balsamo, 2012. Free-living marine nematodes as bioindicators: past, present, and future perspectives. Environmental Research Journal 6: 17–35.

    Google Scholar 

  • Semprucci, F., P. Boi, A. Manti, A. Covazzi Harriague, M. Rocchi, P. Colantoni, S. Papa & M. Balsamo, 2010. Benthic communities along a littoral of the Central Adriatic Sea (Italy). Helgoland Marine Research 64: 101–115.

    Article  Google Scholar 

  • Semprucci, F., P. Colantoni, C. Sbrocca, G. Baldelli & M. Balsamo, 2014. Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo lagoon (Maldives, Indian Ocean). Journal of the Marine Biological Association of the United Kingdom 94: 1377–1385.

    Article  Google Scholar 

  • Semprucci, F., V. Losi & M. Moreno, 2015. A review of Italian research on free-living marine nematodes and the future perspectives in their use as Ecological Indicators (EcoInd). Mediterranean Marine Science 16: 352–365.

    Article  Google Scholar 

  • Short, A. D., 1983. Sediments and structures in beach–nearshore environments, South Australia. In Mctachlan, A. & T. Erasmus (eds), Sandy Beaches as Ecosystems Dr. W. Junk Publishers, The Hague: 145–167.

    Chapter  Google Scholar 

  • Siddig, A. A. H., A. M. Ellison, A. Ochs, C. Villar-Leemand & M. K. Laub, 2016. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators 60: 223–230.

    Article  Google Scholar 

  • Singh, R. & B. S. Ingole, 2016. Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone. Biogeosciences 13: 191–209.

    Article  Google Scholar 

  • Soetaert, K., J. Middelburg, J. Wijsman, P. Herman & C. Heip, 2002. Ocean margin early diagenetic processes and models. In Wefer, G., D. Billett, D. Hebbeln, B. B. Jørgensen & T. J. von Weesing (eds), Ocean Margin Systems Springer, Berlin: 157–177.

    Chapter  Google Scholar 

  • Soltwedel, T., O. Pfannkuche & H. Thiel, 1996. The size structure of deep-sea meiobenthos in the North-Eastern Atlantic: nematode size spectra in relation to environmental variables. Journal of the Marine Biological Association of the United Kingdom 76: 327–344.

    Article  Google Scholar 

  • Somerfield, P. J. & R. M. Warwick, 1996. Meiofauna in Marine Pollution Monitoring Programmes: A Laboratory Manual. Ministry of Agriculture, Fisheries and Food, Lowestoft.

  • Spellerberg, I. F., 2005. Monitoring Ecological Change, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Spellman, F. R. & J. E. Drinan, 2001. Stream Ecology and Self-purification: An Introduction, Taylor and Francis, Pennsylvania:

    Book  Google Scholar 

  • Sroczyńska, K., P. Chainho, S. Vieira & H. Adão, 2021. What makes a better indicator? Taxonomic vs functional response of nematodes to estuarine gradient. Ecological Indicators 121: 107113.

    Article  Google Scholar 

  • Steyaert, M., P. Herman, T. Moens, J. Widdows & M. Vincx, 2001. Tidal migration of nematodes on an estuarine tidal flat (the Molenplaat, Schelde Estuary, SW Netherlands). Marine Ecology Progress Series 224: 299–304.

    Article  Google Scholar 

  • Thistle, D. & K. M. Sherman, 1985. The nematode fauna of a deep–sea site exposed to strong near–bottom currents. Deep Sea Research Part a. Oceanographic Research Papers 32: 1077–1088.

    Article  Google Scholar 

  • Thistle, D., P. J. D. Lambshead & K. M. Sherman, 1995. Nematode tail–shape groups respond to environmental differences in the deep sea. Vie Et Milieu 45: 107–115.

    Google Scholar 

  • Tietjen, J. H., 1991. Ecology of Free–living Nematodes from the Continental Shelf of the Central Great Barrier Reef Province. Estuarine, Coastal and Shelf Science 32: 421–438.

    Article  Google Scholar 

  • Travers, A., M. J. Eliot, I. G. Eliot & M. Jendrzejczak, 2010. Sheltered sandy beaches of southwestern Australia. Geological Society of London, Special Publications 346: 23–42.

    Article  Google Scholar 

  • Underwood, A. J., 1993. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Australian Journal of Ecology 18: 99–116.

    Article  Google Scholar 

  • Underwood, A. J., 1994. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications 4: 3–15.

    Article  Google Scholar 

  • Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.

  • Underwood, A. J., M. G. Chapman & S. D. Connell, 2000. Observation in ecology: you can’t make progress on processes without understanding the patterns. Journal of Experimental Marine Biology and Ecology 250: 97–115.

    Article  CAS  PubMed  Google Scholar 

  • United States Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Agriculture Handbook No. 60. U.S. Government Printing Office, Washington.

  • Vanaverbeke, J., K. Soetaert & M. Vincx, 2004a. Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Marine Ecology Progress Series 273: 139–146.

    Article  Google Scholar 

  • Vanaverbeke, J., M. Steyaert, K. Soetaert, V. Rousseau, D. Van Gansbeke, J. Y. Parent & M. Vincx, 2004b. Changes in structural and functional diversity of nematode communities during a spring phytoplankton bloom in the southern North Sea. Journal of Sea Research 52: 281–292.

    Article  Google Scholar 

  • Vanhove, S., J. Wittoeck, G. Desmet, B. Van Den Berghe, R. L. Herman, R. P. M. Bak, G. Nieuwland, J. H. Vosjan, A. Boldrin, S. Rabitti & M. Vincx, 1995. Deep sea meiofauna communities in Antarctica: structural analysis and the relation with the environment. Marine Ecology Progress Series 127: 65–76.

    Article  Google Scholar 

  • Walkley, A. J. & I. A. Black, 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29–38.

    Article  CAS  Google Scholar 

  • Wang, K., L. Zou, X. Lu & X. Mou, 2018. Organic carbon source and salinity shape sediment bacterial composition in two China marginal seas and their major tributaries. Science of the Total Environment 633: 1510–1517.

    Article  CAS  PubMed  Google Scholar 

  • Warwick, R. M., H. M. Platt & P. J. Somerfield, 1998. Free-living Marine Nematodes Part III. Monhysterids. In Barnes, R. S. K. & J. H. Crothers (eds), Synopses of the British Fauna (New Series), vol. 53. The Linnean Society of London and The Estuarine and Brackish-Water Sciences Association, London.

  • Whitfield, A. & M. Elliott, 2011. Ecosystem and biotic classifications of estuaries and coasts. In Wolanski, E. & D. S. McLusky (eds), Treatise on Estuarine and Coastal Science Academic Press, Waltham: 99–124.

    Chapter  Google Scholar 

  • Wieser, W., 1953. Die Beziehungzwischen Mundhöhlengestalt, Emährungsweise und Vorkommenbeimarinen Nematoden. Arkivfür Zoologie 4: 439–484.

    Google Scholar 

  • Will, K. W. & D. Rubinoff, 2004. Myth of the molecule: DNA bar codes for species cannot replace morphology for identification and classification. Cladistics 20: 47–55.

    Article  PubMed  Google Scholar 

  • Yeates, G. W., 1970. The diversity of soil nematode faunas. Pedobiologia 10: 104–107.

    Google Scholar 

  • Yeates, G. W., 1984. Variation in soil nematode diversity under pasture with soil and year. Soil Biology and Biochemistry 16: 95–102.

    Article  Google Scholar 

  • Zeppilli, D., D. Leduc, C. Fontanier, D. Fontaneto, S. Fuchs, A. J. Gooday, A. Goineau, J. Ingels, V. N. Ivanenko, R. M. Kristensen, R. C. Neves, N. Sanchez, R. Sandulli, J. Sarrazin, M. V. Sørensen, A. Tasiemski, A. Vanreusel, M. Autret, L. Bourdonnay, M. Claireaux, V. Coquillé, L. D. Wever, D. Rachel, J. Marchant, L. Toomey & D. Fernandes, 2018. Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity 48: 35–71.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Zoological Survey of India through Junior and Senior Research Fellowship to TKD in 2011–2015. The authors are grateful to Dr. K. Venkataraman (former Director, Zoological Survey of India) for their generous support and provision of facilities to work on meiofauna. Sincere thanks to Dr. Dmitry M. Miljutin (Bioconsult Schuchardt & Scholle, Bremen, Germany) and Dr. Alberto de Jesús Navarrete (Department of Systematics and Aquatic Ecology, ECOSUR, Mexico) for unconditional help in gathering knowledge on free-living nematode taxonomy and ecology. United Engineering Enterprise (Kasba Industrial Estate, Kolkata) and National Bureau of Soil Survey & Land Use Planning, Indian Council of Agricultural Research (Sector-II, Block-DK, Salt Lake, Bidhan Nagar, Kolkata) provided support for sediment analyses.

Funding

The funding was supported by Zoological Survey of India through Junior and Senior Research Fellowship to TKD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tridip Kumar Datta.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare regarding the content of this article.

Ethical approval

This scientific research meets all Indian and Italian ethics and animal care regulations. No special permits were required to collect and analyse sediment samples, since no species or habitats at risk were involved. All authors of this study followed the ethical rules according to the COPE guidelines. Data were analyzed with honesty and integrity. All data and text are the authors' own original work.

Informed consent

All authors have agreed to participate in this paper and approved its submission to Hydrobiologia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology IV

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 153 kb)

Supplementary file2 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, T.K., Bertocci, I. Integrating spatial and temporal patterns of free-living nematodes with physical and chemical environmental traits: implications for coastal ecological monitoring. Hydrobiologia 850, 1355–1391 (2023). https://doi.org/10.1007/s10750-022-04945-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04945-2

Keywords

Navigation