Skip to main content
Log in

Ecological functioning of free-living marine nematodes in coastal wetlands: an overview

  • Review
  • Oceanology
  • Published:
Chinese Science Bulletin

Abstract

Nematodes are small multicellular, thread-like organisms, inhabiting almost all conceivable environments; among these, some 25 % are free-living marine forms with a population density of (1–12) × 106 inds m−2 in seabed sediment, reaching maximum values in muddy estuaries and salt marshes. A large quantity of carbon from the salt marsh plants enters the ecosystem via the detritus pathway, in which nematodes play an important role through their feeding and bioturbation activities. Vegetation influences the sedimentary environment and modifies the distribution pattern of nematode communities in coastal wetlands. Nematodes are coupled closely with bacteria/detritus in microbial food webs, stimulating bacterial growth and subsequent nutrient remineralization; they provide food sources for higher trophic levels and serve as a linkage between micro- and macro-fauna. Furthermore, nematodes have a potential to provide proxies that can be used in diagnosing environmental quality. In China, only a limited number of nematode data sets are available for the coastal wetlands across several different climatic zones. It is necessary to carry out additional investigations into the biology and ecology of nematodes in order to delineate their ecological functioning in coastal wetlands. On such a basis, the contribution made by nematodes to material cycling and the ecological functioning in coastal wetlands can be quantified. The assessment of their biological diversity should be a focus, which is fundamental in the study of wetland ecosystem dynamic mechanisms. In addition to laboratory and mesocosm experiments, mathematical models should be established to predict the responses of ecosystem to the environmental disturbance. Finally, it is necessary to improve the techniques for nematode analysis, to enhance the efficiency of data acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Platt HM, Warwick RM (1983) Free-living marine nematodes. Part I: British enoplids. Pictorial key to world genera and notes for the identification of British species. In: Kermack DM, Barnes RSK (eds) A new series synopses of the British fauna, vol 28. Cambridge University Press, Cambridge, p 307

  2. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Google Scholar 

  3. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev 23:399–489

    Google Scholar 

  4. Soetaert K, Vincx M, Wittoeck J et al (1995) Meiobenthic distribution and nematode community structure in five european estuaries. Hydrobiologia 311:185–206

    Google Scholar 

  5. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, Berlin

    Google Scholar 

  6. Fonseca G, Hutchings P, Gallucci F (2011) Meiobenthic communities of seagrass beds (zostera capricorni) and unvegetated sediments along the coast of new south wales, Australia. Estuar Coast Shelf Sci 91:69–77

    Google Scholar 

  7. Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33

    Google Scholar 

  8. Perillo GME, Wolanski E, Cahoon DR et al (eds) (2009) Coastal Wetlands: an integrated ecosystem approach. Elsevier, Amsterdam

    Google Scholar 

  9. Boorman LA (1999) Salt marshes-present functioning and future change. Mangroves Salt Marshes 3:227–241

    Google Scholar 

  10. Costa M, Catarino F, Bettencourt A (2001) The role of salt marshes in the Mira estuary (Portugal). Wetl Ecol Manage 9:121–134

    Google Scholar 

  11. Kuipers B, de Wilde PAWJ, Creutzberg F (1981) Energy flow in a tidal flat ecosystem. Mar Ecol Prog Ser 5:215–221

    Google Scholar 

  12. Van Oevelen D, Soetaert K, Middelburg JJ et al (2006) Carbon flows through a benthic food web: integrating biomass, isotope and tracer data. J Mar Res 64:453–482

    Google Scholar 

  13. McLusky DS, Elliott M (eds) (2004) The estuarine ecosystem: ecology, threats, and management. Oxford University Press, Oxford

    Google Scholar 

  14. Gerlach SA (1978) Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33:55–69

    Google Scholar 

  15. Wang Y, Zhu DK (2006) Characteristics and exploitation of coastal wetland of China. Resour Environ Yangtze Basin 15:553–559

    Google Scholar 

  16. Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Google Scholar 

  17. Warwick RM, Platt H, Somerfield PJ (1998) Free-living marine nematodes. Part III. Monhysteridas. Pictorial keys to world genera and notes for the identification of British species. In: Kermack DM, Barnes RSK (eds) A new series synopses of the British fauna, vol 53. Field Studies Council, Shrewsbury, p 296

    Google Scholar 

  18. Bevilacqua S, Sandulli R, Plicanti A et al (2012) Taxonomic distinctness in mediterranean marine nematodes and its relevance for environmental impact assessment. Mar Pollut Bull 64:1409–1416

    Google Scholar 

  19. Lambshead PJD (2004) Marine nematode biodiversity. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol 1. CABI Publishing, Wallingford, pp 439–468

    Google Scholar 

  20. Eyualem A, Decraemer W, de Ley P (2008) Global diversity of nematodes (Nematoda) in freshwater. Hydrobiologia 595:67–78

    Google Scholar 

  21. Costello MJ, Bouchet P, Emblow CS et al (2006) European marine biodiversity inventory and taxonomic resources: state of the art and gaps in knowledge. Mar Ecol Prog Ser 316:257–268

    Google Scholar 

  22. Zhang ZN, Zhou H (2003) The systematics of free-living marine nematodes. J Ocean Univ Qingdao 33:89–900 (in Chinese)

    Google Scholar 

  23. Warwick RM (1986) A new method for detecting pollution effects on marine macrobenthic communities. Mar Biol 92:557–562

    Google Scholar 

  24. Warwick RM (1988) The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Mar Pollut Bull 19:259–268

    Google Scholar 

  25. Powers T (2004) Nematode molecular diagnostics: from bands to barcodes. Annu Rev Phytopathol 42:367–383

    Google Scholar 

  26. Vandepitte L, Vanaverbeke J, Vanhoorne B et al (2009) The MANUELA database: an integrated database on meiobenthos from European marine waters. Meiofauna Mar 17:35–60

    Google Scholar 

  27. Deprez T (2006) NeMys: an all-round database system for biological information. MarBEF News Lett 4:31–32. Digital Version (open file) (http://nemys.ugent.be/index.asp?c=67)

  28. Tarjan AC, Keppner EJ (1999) Illustrated key to the genera of free-living marine nematodes in the superfamily Chromadoroidea exclusive of the Chromadoridae. UF/IFAS Extension Publ# EENY-082, Gainsville, Florida. http://creatures.ifas.ufl.edu/nematode/marine_nematodes.htm

  29. Eyualem A, Mekete T, Thomas WK (2011) A critique of current methods in nematode taxonomy. Afr J Biotech 10:312–323

    Google Scholar 

  30. Bhadury P, Austen MC, Bilton DT et al (2006) Molecular detection of marine nematodes from environmental samples: overcoming eukaryotic interference. Aqua Microb Ecol 44:97–103

    Google Scholar 

  31. Bhadury P, Austen MC, Bilton DT et al (2006) Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9

    Google Scholar 

  32. Wieser W (1953) Die beziehung zwischen mundhohlengestalt, ernahrungsweise und vorkommen bei freilebenden marinen nematoden. Arch Zool 2:439–484

    Google Scholar 

  33. Wieser W (1959) The effect of grain size on the distribution of small invertebrates inhabiting the beaches of Puget sound. Limnol Oceanogr 4:181–194

    Google Scholar 

  34. Moens T, Vincx M (1997) Observations of the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227

    Google Scholar 

  35. Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Google Scholar 

  36. Perkins DM, Reiss J, Yvon-Durocher G et al (2010) Global change and food webs in running waters. Hydrobiologia 657:181–198

    Google Scholar 

  37. Reiss J, Bridle JR, Montoya JM et al (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514

    Google Scholar 

  38. Schratzberger M, Warr K, Rogers S (2007) Functional diversity of nematode communities in the southwestern north sea. Mar Env Res 63:368–389

    Google Scholar 

  39. Wang AJ, Gao S, Jia JJ (2006) Impact of the cord-grass Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes on the Jiangsu coast, China. Acta Oceanol Sin 25:92–99 (in Chinese)

    Google Scholar 

  40. Yuan XZ, Lu JJ (2003) Micro-topographical element-“Biogenic Structure” and spatial distribution of meiofauna on the tidal flat. Chin J Ecol 22:124–126 (in Chinese)

    Google Scholar 

  41. Teal JM, Kanwisher J (1961) Gas exchange in a Georgia salt marsh. Limnol Oceanogr 6:388–399

    Google Scholar 

  42. Lee RW, Kraus DW, Doeller JE (1999) Oxidation of sulfide by Spartina alterniflora roots. Limnol Oceanogr 44:1155–1159

    Google Scholar 

  43. Guerrini A, Colangelo MA, Ceccherelli VU (1998) Recolonization patterns of meiobenthic communities in brackish vegetated and unvegetated habitats after induced hypoxia/anoxia. Hydrobiologia 375(376):73–87

    Google Scholar 

  44. Gao WH, Du YF, Wang DD et al (2012) Distribution patterns of heavy metals in surficial sediment and their influence on the environment quality of the intertidal flat of Luoyuan Bay, Fujian coast. Environ Sci 33:3097–3103 (in Chinese)

    Google Scholar 

  45. Wang DD, Gao S, Du YF (2012) Distribution patterns of sediment chlorophyll-a in Spartina alterniflora salt marshes at Rudong coast of Jiangsu, East China. Chin J Ecol 31:2247–2254 (in Chinese)

    Google Scholar 

  46. Novak R (1989) Ecology of nematodes in the mediterranean seagrass Posidonia oceanica (L.) Delile 1. General part and faunistics of the nematode community. Mar Ecol 10:335–363

    Google Scholar 

  47. Blanchard GF (1991) Measurement of meiofauna grazing rates on microphytobenthos: is primary production a limiting factor? J Exp Mar Biol Ecol 147:37–46

    Google Scholar 

  48. Urban-Malinga B, Gheskiere T, Degraer S et al (2008) Gradients in biodiversity and macroalgal wrack decomposition rate across a macrotidal, ultradissipative sandy beach. Mar Biol 155:79–90

    Google Scholar 

  49. Gwyther J, Fairweather PG (2005) Meiofaunal recruitment to mimic pneumatophores in a cool-temperate mangrove forest: Spatial context and biofilm effects. J Exp Mar Biol Ecol 317:69–85

    Google Scholar 

  50. Neira C, Rackemann M (1996) Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: effects on the meiobenthos. J Sea Res 36:153–170

    Google Scholar 

  51. Danovaro R, Gambi C (2002) Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability. Mar Biol 141:667–677

    Google Scholar 

  52. Fonseca MS, Zieman JC, Thayer GW et al (1983) The role of current velocity in structuring eelgrass (zostera marina) meadows. Estuar Coast Shelf Sci 17:367–380

    Google Scholar 

  53. Fisher R, Sheaves M (2003) Community structure and spatial variability of marine nematodes in tropical australian pioneer seagrass meadows. Hydrobiologia 495:143–158

    Google Scholar 

  54. Schrijvers J, Vincx M (1997) Cage experiments in an East African mangrove forest: a synthesis. J Sea Res 38:123–133

    Google Scholar 

  55. Craft C, Sacco J (2003) Long-term succession of benthic infauna communities on constructed Spartina alterniflora marshes. Mar Ecol Prog Ser 257:45–58

    Google Scholar 

  56. Van Oevelen D, Middelburg JJ, Soetaert K et al (2006) The fate of bacterial carbon in an intertidal sediment: modeling an in situ isotope tracer experiment. Limnol Oceanogr 51:1302–1314

  57. Legendre L, Rassoulzadegan F (1996) Food-web mediated export of biogenic carbon in oceans: hydrodynamic control. Mar Ecol Progs Ser 145:179–193

    Google Scholar 

  58. Woodward G, Ebenman B, Emmerson M et al (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409

    Google Scholar 

  59. Menn I (2002) Beach morphology and food web structure: comparison of an eroding and an accreting sandy shore in the north sea. Helgol Mar Res 56:177–189

    Google Scholar 

  60. Alongi DM (1985) Effect of physical disturbance on population dynamics and trophic interactions among microbes and meiofauna. J Mar Res 43:351–364

    Google Scholar 

  61. Du YF, Xu KD, Warren A et al (2012) Benthic ciliate and meiofaunal communities in two contrasting habitats of an intertidal estuarine wetland. J Sea Res 70:50–63

    Google Scholar 

  62. Lillebø AI, Flindt MR, Pardal MA et al (2007) The faunal role in the degradation of the common intertidal salt marsh plant Scirpus maritimus. Hydrobiologia 579:369–378

    Google Scholar 

  63. Tietjen JH (1980) Microbial meiofaunal interrelationships: a review. In: Proceedings of the microbiology VIII conference of the American Society of Microbiology on aquatic microbial ecology, 7–10 February 1979, Clearwater Beach, Florida. American Society for Microbiology, Washington, pp 335–338

  64. Pascal PY, Dupuy C, Richard P et al (2008) Bacterivory of a mudflat nematode community under different environmental conditions. Mar Biol 154:671–682

  65. Findlay S, Tenore KR (1982) Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. Mar Ecol Prog Ser 8:161–166

  66. Lillebø AI, Flindt MR, Pardal MA et al (1999) The effect of macrofauna, meiofauna and microfauna on the degradation of Spartina maritima detritus from a salt marsh area. Acta Oecol 20:249–258

    Google Scholar 

  67. Riemann F, Schrage M (1978) The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia 34:75–88

    Google Scholar 

  68. Fenchel T (1996) Worm burrows and oxic microniches in marine sediments. 1. Spatial and temporal scales. Mar Biol 127:289–295

    Google Scholar 

  69. Warwick RM (1981) Survival strategies of meiofauna. Mar Sci 15:39–52

    Google Scholar 

  70. Moens T, Dos Santos GAP, Thompson F et al (2005) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83

    Google Scholar 

  71. Alkemade R, Wielemaker A, De Jong S et al (1992) Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica detritus. Mar Ecol Prog Ser 90:149–155

    Google Scholar 

  72. Aller RC, Aller JY (1992) Meiofauna and solute transport in marine muds. Limnol Oceanogr 37:1018–1033

    Google Scholar 

  73. Murray JMH, Meadows A, Meadows PS (2002) Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology 47:15–30

    Google Scholar 

  74. Meadow PS, Meadows A, Murray JMH (2012) Biological modifiers of marine benthic seascapes: their role as ecosystem engineers. Geomorphology 157–158:31–48

    Google Scholar 

  75. Feller R, Coull B (1995) Non-selective ingestion of meiobenthos by juvenile spot (Leiostomus xanthurus) (pisces) and their daily ration. Vie Milieu 45:49–59

    Google Scholar 

  76. Colombini I, Berti R, Nocita A et al (1996) Foraging strategy of the mudskipper periophthalmus sobrinus eggert in a kenyan mangrove. J Exp Mar Biol Ecol 197:219–235

    Google Scholar 

  77. Yu OH, Suh H-L, Shirayama Y (2003) Feeding ecology of three amphipod species Synchelidium lenorostralum, S. trioostegitum and Gitanopsis japonica in the surf zone of a sandy shore. Mar Ecol Prog Ser 258:169–199

    Google Scholar 

  78. Sikora JP, Sikora WB, Erkenbrecher CW et al (1977) Significance of ATP, carbon, and caloric content of meiobenthic nematodes in partitioning benthic biomass. Mar Biol 44:7–14

    Google Scholar 

  79. Gee JM (1987) Impact of epibenthic predation on estuarine intertidal harpacticoid copepod populations. Mar Biol 96:497–510

    Google Scholar 

  80. Coull BC (1990) Are members of the meiofauna food for higher trophic levels? Trans Am Micro Soc 109:233–246

    Google Scholar 

  81. Coull BC, Greenwood JG, Fielder DR et al (1995) Subtropical Australian juvenile fish eat meiofauna: experiments with winter whiting Sillago maculata and observations on other species. Mar Ecol Prog Ser 125:13–19

    Google Scholar 

  82. Watanabe T, Kitajima C, Fujita S (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34:115–143

    Google Scholar 

  83. Kanazawa A (1985) Essential fatty acid and lipid requirement of fish. In: Cowey CB, Mackie AM, Bell JG (eds) Nutrition and feeding in fish. Academic Press, London, pp 281–298

    Google Scholar 

  84. Dobbs F, Guckert J (1988) Microbial food resources of the macrofaunal-deposit feeder Ptychodera bahamensis (Hemichordata: Enteropneusta). Mar Ecol Prog Ser 45:127–136

    Google Scholar 

  85. Dobbs FC, Guckert JB (1988) Callianassa trilobata (Crustacea: Thalassinidea) influences abundance of meiofauna and biomass, composition, and physiologic state of microbial communities within its burrow. Mar Ecol Prog Ser 45:69–79

    Google Scholar 

  86. Findlay RH, Dobbs FC (1993) Quantitative description of microbial communities using lipid analysis. In: Kemp PF, Sherr BF, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publications, Boca Raton, pp 271–284

    Google Scholar 

  87. Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Google Scholar 

  88. Leduc D, Probert PK (2009) The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: a study using stable isotope and fatty acid analyses. J Exp Mar Biol Ecol 371:130–139

    Google Scholar 

  89. Hourston M, Potter IC, Warwick RM et al (2011) The characteristics of the nematode faunas in subtidal sediments of a large microtidal estuary and nearshore coastal waters differ markedly. Estuar Coast Shelf Sci 94:68–76

    Google Scholar 

  90. Couch CA (1989) Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuar Coast Shelf Sci 28:433–441

    Google Scholar 

  91. Guilini K, Veit-Köhler G, De Troch M et al (2013) Latitudinal and temporal variability in the community structure and fatty acid composition of deep sea nematodes in the Southern Ocean. Prog Oceanogr 110:80–92

    Google Scholar 

  92. Epstein SS (1997) Microbial food webs in marine sediments. II. Seasonal changes in trophic interactions in a sandy tidal flat community. Microb Ecol 34:199–209

    Google Scholar 

  93. Spieth H, Möller T, Ptatscheck C et al (2011) Meiobenthos provides a food resource for young cyprinids. J Fish Biol 78:138–149

    Google Scholar 

  94. Kennedy AD, Jacoby CA (1999) Biological indicators of marine environmental health: meiofauna—a neglected benthic component? Environ Monit Assess 54:47–68

    Google Scholar 

  95. Patrício J, Adão H, Neto JM et al (2012) Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecol Indic 14:124–137

    Google Scholar 

  96. Höss S, Weltje L (2007) Endocrine disruption in nematodes: effects and mechanisms. Ecotoxicology 16:15–28

    Google Scholar 

  97. Boufahja F, Hedfi A, Amorri J et al (2011) Experimental validation of the “relative volume of the pharyngeal lumen (rvpl)” of free-living nematodes as a biomonitoring index using sediment-associated metals and/or diesel fuel in microcosms. J Exp Mar Biol Ecol 399:142–150

    Google Scholar 

  98. Platt H, Warwick RM (1988) Free-living marine nematodes. PartII. British chromadorids. Pictorial keys to world genera and notes for the identification of British species. In: Kermack DM, Barnes RSK (eds) A new series synopses of the British fauna, vol 38. Great Britain at the Bath Press, Avon, p 502

    Google Scholar 

  99. Griffiths B, Donn S, Neilson R et al (2006) Molecular sequencing and morphological analysis of a nematode community. Appl Soil Ecol 32:325–337

    Google Scholar 

  100. Raffaelli D, Mason C (1981) Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar Pollut Bull 12:158–163

    Google Scholar 

  101. Amjad S, Gray JS (1983) Use of the nematode-copepod ratio as an index of organic pollution. Mar Pollut Bull 14:178–181

    Google Scholar 

  102. Warwick RM (1981) The nematode/copepod ratio and its use in pollution ecology. Mar Pollut Bull 12:329–333

    Google Scholar 

  103. Raffaelli D (1987) The behaviour of the nematode/copepod ratio in organic pollution studies. Mar Environ Res 23:135–152

    Google Scholar 

  104. Coull B, Hicks G, Wells J (1981) Nematode/copepod ratios for monitoring pollution: a rebuttal. Mar Pollut Bull 12:378–381

    Google Scholar 

  105. Lambshead P (1986) Sub-catastrophic sewage and industrial waste contamination as revealed by marine nematode faunal analysis. Mar Ecol Prog Ser 29:247–260

    Google Scholar 

  106. Bongers T, Alkemade R, Yeates G (1991) Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the maturity index. Mar Ecol Prog Ser 76:135–142

    Google Scholar 

  107. Boufahja F, Beyrem H, Aïssa P (2006) Relative pharyngeal volume (rpv): new index for stress monitoring using meiobenthic nematodes. Meiofauna Mar 15:43–50

    Google Scholar 

  108. Candido EP, Jones D (1996) Transgenic Caenorhabditis elegans strains as biosensors. Trends Biotech 14:125–129

    Google Scholar 

  109. Leung MCK, Williams PL, Benedetto A et al (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    Google Scholar 

  110. Ma H, Kabengi NJ, Bertsch PM et al (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480

    Google Scholar 

  111. Yu ZY, Chen XX, Zhang J et al (2013) Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicol Environ Saf 88:178–184

    Google Scholar 

  112. Zhang ZN, Dang HY, Yu ZS (1993) Studies of meiobenthos community in an organic polluted area of Qingdao Bay. J Ocean Univ Qingdao 23:83–91 (in Chinese)

    Google Scholar 

  113. Dang HY, Huang B, Zhang ZN (1996) Study on marine benthos in an organically polluted intertidal beach of Qingdao Bay. II. The pollution ecology of meiobenthos. Stud Mar Sin 37:91–101 (in Chinese)

    Google Scholar 

  114. Warwick RM, Robinson J (2000) Sibling species in the marine pollution indicator genus pontonema leidy (Nematoda: Oncholaimidae), with a description of P. mediterranea sp. nov. J Nat Hist 34:64–662

  115. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117

    Google Scholar 

  116. Zhang ZN, Li YG, Tu LH et al (1989) Preliminary study on the ecology of the benthic meiofauna in the Huanghe River estuary and its adjacent waters. Oceanol Limnol Sin 3:197–208 (in Chinese)

    Google Scholar 

  117. Zhang ZN, Platt HM (1983) New species of marine nematodes from Qingdao, China. Bull Br Mus (Nat History) Zool 45:253–261

    Google Scholar 

  118. Fleeger JW, Tang ZC, Higgins RP (1986) Preliminary study of the ecology of meiobenthic copepoda and kinorhyncha in the Changjiang estuary and adjacent waters. Stud Mar Sin 27:199–208 (in Chinese)

    Google Scholar 

  119. Guo YQ, Somerfield P, Warwick RM et al (2001) Large-scale patterns in the community structure and biodiversity of free-living nematodes in the Bohai Sea, China. J Mar Biol Assoc UK 81:755–763

    Google Scholar 

  120. Cai LZ, Fu SJ, Yang J et al (2012) Distribution of meiofauna abundance in relation to environmental factors in Beibu Gulf, South China Sea. Acta Oceanol Sin 31:92–103

    Google Scholar 

  121. Tang QS, Su JL, Zhang J (2010) China GLOBEC II: a case study of the Yellow Sea and East China Sea ecosystem dynamics. Deep Sea Res Part II Top Stud Oceanogr 57:993–995

    Google Scholar 

  122. Hua E, Zhang ZN, Yu ZS et al (2010) Preliminary study on the immediate response of the nematode community to typhoon soudelor. Deep Sea Res Part II Top Stud Oceanogr 57:1064–1070

    Google Scholar 

  123. Liu XS, Zhang ZN, Huang Y (2007) Sublittoral meiofauna with particular reference to nematodes in the Southern Yellow Sea, China. Estuar Coast Shelf Sci 71:616–628

    Google Scholar 

  124. Zhang ZN, Gu F, Yu ZS (1990) A study on spatial pattern of marine nematodes in the subaqueous delta of the Huanghe River. Oceanol Limnol Sin 21:11–19 (in Chinese)

    Google Scholar 

  125. Fan SL, Liu HB, Zhang ZN et al (2006) Study on the abundance and biomass in the sandy beach of Taiping Bay, Qingdao. J Ocean Univ Qingdao 36:98–104 (in Chinese)

    Google Scholar 

  126. Zhang ZN, Zhou H, Mu FH (2001) Biodiversity and neutral model analyses on nematode community in Bohai Sea, China. Acta Ecol Sin 21:1808–1814 (in Chinese)

    Google Scholar 

  127. Du YF, Xu KD, Meng ZC et al (2010) Spatial distribution of meiofauna in relation to environmental factors in the South China Sea. Oceanol Limnol Sin 41:199–207

    Google Scholar 

  128. Fu SJ, Cai LZ, Boucher G et al (2013) Two new Richtersia species from the northern Beibu Gulf, China. J Nat Hist 47:1921–1931

    Google Scholar 

  129. Huang Y, Zhang ZN (2010) Two new species of Xyalidae (nematoda) from the Yellow Sea, China. J Mar Biol Assoc UK 90:391–397

    Google Scholar 

  130. Huang Y, Sun J (2011) Two new free-living marine nematode species of the genus Paramarylynnia (Chromadorida: Cyatholaimidae) from the Yellow Sea, China. J Mar Biol Assoc UK 91:395–401

    Google Scholar 

  131. Lin KX, Zhang ZN, Han J (2003) A preliminary study on the meiofauna in the intertidal zone in Nanji Islands Marine Reserve. J Ocean Univ Qingdao 32:219–225 (in Chinese)

    Google Scholar 

  132. Chen HL, Li B, Hu JB et al (2007) Effects of Spartina alterniflara invasion on benthic nematode communities in the Yangtze Estuary. Mar Ecol Prog Ser 336:99–110

    Google Scholar 

  133. Zhou H (2001) Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong. J Exp Mar Biol Ecol 256:99–121

    Google Scholar 

  134. Zhai XM, Zhang ZN (1998) The structure of prawn pond ecosystem. J Ocean Univ Qingdao 28:275–282 (in Chinese)

    Google Scholar 

  135. Ji RB, Zhang ZN (1994) Grazing of meiobenthos on benthic diatom in a prawn culture pond using 14C-labelling technique. J Ocean Univ Qingdao 24:199–205 (in Chinese)

    Google Scholar 

  136. Wang SH, Zhang ZN, Lv RH (2002) Grazing rate of juvenile of Neanthes japonica on intertidal microphytobenthos in Dingzi bay. J Ocean Univ Qingdao 32:409–414 (in Chinese)

    Google Scholar 

  137. Liu XS, Xu WZ, Cheung SG et al (2011) Marine meiobenthic and nematode community structure in Victoria harbour, Hong Kong upon recovery from sewage pollution. Mar Pollut Bull 63:318–325

    Google Scholar 

  138. Liu XS, Xu WZ, Cheung SG et al (2008) Subtropical meiobenthic nematode communities in Victoria harbour, Hongkong. Mar Pollut Bull 56:1491–1497

    Google Scholar 

  139. Lü Y, Zhang W, Gao Y et al (2011) Preliminary study on responses of marine nematode community to crude oil contamination in intertidal zone of bathing beach, Dalian. Mar Pollut Bull 62:2700–2706

    Google Scholar 

  140. Shen XQ, Yang GP, Liu YJ (2007) Nematode diversity of Qingdao coast inferred from the 18s ribosomal DNA gene sequence analysis. J Ocean Univ China 6:132–136

    Google Scholar 

  141. Tian Y, Ru SG (2012) Effects of monocrotophos on the mRNA express of stress-lated genes of Caenorhabditis elegans. J Ocean Univ China 42:50–56

    Google Scholar 

  142. Wang Y (ed) (2012) Regional oceanography of China seas–marine geomorphology. Ocean Press, Beijing (in Chinese)

    Google Scholar 

  143. Tang BP, Zhang DZ, Ge BM et al (2013) Sustainable utilization of biological resources from coastal wetlands in China. Chin Sci Bull 58:2270–2275

  144. Du YF, Xu KD, Lei YL (2009) Simultaneous enumeration of diatom, protozoa and meiobenthos from marine sediments using Ludox-QPS method. Chin J Oceanol Limnol 27:775–783

    Google Scholar 

  145. Ye SM, Gao SJ, Pan Y et al (2006) The automatic separation system for marine meiobenthos applying laser-induced fluorescence detecting technology. Bull Sci Technol 22:395–399 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Mega-Science Program of the Ministry of Science and Technology of China (2013CB956504), the National Natural Science Foundation of China (40906066) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Thanks are due to Prof. Michael Collins (the University of Southampton, UK), for his supportive suggestions and language corrections. Thanks are also extended to the reviewers for their constructive comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfen Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 145 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Gao, S., Warwick, R.M. et al. Ecological functioning of free-living marine nematodes in coastal wetlands: an overview. Chin. Sci. Bull. 59, 4692–4704 (2014). https://doi.org/10.1007/s11434-014-0592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0592-z

Keywords

Navigation