Skip to main content

Advertisement

Log in

Impact of Post-Tropical Storm Arthur (2014) on benthic Arcellinida assemblage dynamics in Harvey Lake, New Brunswick, Canada

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Arcellinida (testate lobose amoebae) were examined in surface-sediment samples collected in 2015 from throughout Harvey Lake, New Brunswick, Canada to assess whether the passage of Post-Tropical Storm Arthur in 2014 impacted the distribution of taxa and assemblages. Cluster analysis and non-metric multidimensional scaling (NMDS) revealed four distinct arcellinidan assemblages: (1) Deep Water Reworking Assemblage (DWR; approximately unbiased, AU P-value = 89%); (2) Arsenic Impact Assemblage (AI; AU P-value = 92%); (3) Northern Shallow Water Assemblage A (NSWA; AU P-value = 66%); and (4) Northern Shallow Water Assemblage B (NSWB; AU P-value = 0%). Redundancy analysis (RDA) and partial-RDA results were used to identify four variables that significantly influenced the assemblage composition and explained 20.2% of the arcellinidan distributional variability: [arsenic (As), wind mixing probability (WMP), water depth and sedimentary grain size represented by the very coarse silt end member 2 (EM2) which was 40 μm]. Arsenic concentration in the sediments of Harvey Lake is an important control over the distribution of Arcellinida assemblages. Levels of sedimentary As in samples from the southern part of Harvey Lake, near As-bearing volcanic bedrock in the catchment, exceeded the Probable Effect Level (17 ppm) and Interim Sediment Quality Guideline (5.9 ppm) for this element. Shallower water (less than median water depth of 3.56 m) and highly diverse assemblages NSWA and NSWB (median SDI = 2.6) significantly correlated with wind mixing probability, while deeper water (greater than median = 6.2 m) and moderately to highly diverse assemblages DWR and AI (SDI range 2.4–2.7) associated strongly with EM2. EM2 was derived from the suspension of and redeposition of sediments when the storm water wave base was deepened during the passage of Arthur. Arcellinidans were carried into suspension along with very coarse silt grain particles during the passage of the storm and redeposited at all water depths when wave energy decreased. Water depth of sampling stations should be taken into consideration in lakes that may be periodically impacted by large storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used in this study are available at reasonable request from the corresponding author.

References

  • Alley, R. B., J. Marotzke, W. D. Nordhaus, J. T. Overpeck, D. M. Peteet, R. A. Pielke Jr., R. T. Pierrehumbert, P. B. Rhines, T. F. Stocker, L. D. Talley & J. M. Wallace, 2003. Abrupt climate change. Science 299: 2005–2010.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, W. G., W. G. Bailey, T. R. Oke & W. R. Rouse, 1997. Surface climates of Canada, Vol. 4. McGill-Queen’s Press-MQUP, Montreal:

    Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME), 2002. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. In: Canadian Environment Quality Guidelines.

  • CBC, 2008. Harvey Looks at Options to Deal with Uranium, Arsenic in Water. CBC New Brunswick [available on internet at https://www.cbc.ca/news/canada/new-brunswick/harvey-looks-at-options-to-deal-with-uranium-arsenic-in-water-1.741216]. Accessed 23 March 2021.

  • Charman, D. J., D. Hendon, W. A. Woodland & Quaternary Research Association, 2000. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats. Quaternary Research Association.

  • Cockburn, N., J. Corsaut, M. S. Kovacs, K. St Lawrence & J. W. Hicks, 2020. Validation protocol for current good manufacturing practices production of [15O] water for hybrid PET/MR studies. Nuclear Medicine Communications 41: 1100–1105.

    Article  CAS  PubMed  Google Scholar 

  • Dietze, E., K. Hartmann, B. Diekmann, J. IJmker, F. Lehmkuhl, S. Opitz, G. Stauch, B. Wünnemann & A. Borchers, 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology 243: 169–180.

    Article  Google Scholar 

  • Dostál, J., J. Pšenčík, & D. Zigmantas, 2016. In situ mapping of the energy flow through the entire photosynthetic apparatus. Nature Chemistry 8(7): 705–710.

  • Eden, D. N. & M. J. Page, 1998. Palaeoclimatic implications of a storm erosion record from Late Holocene lake sediments, North Island, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 139: 37–58.

    Article  Google Scholar 

  • Engle, V. D., J. L. Hyland & C. Cooksey, 2009. Effects of Hurricane Katrina on benthic macroinvertebrate communities along the northern Gulf of Mexico coast. Environmental Monitoring and Assessment 150: 193–209.

    Article  PubMed  Google Scholar 

  • Fishbein, E. & R. T. Patterson, 1993. Error-weighted maximum likelihood (EWML): a new statistically based method to cluster quantitative micropaleontological data. Journal of Paleontology 67: 475–486.

    Article  Google Scholar 

  • Gallagher, E., H. Wadman, J. McNinch, A. Reniers & M. Koktas, 2016. A conceptual model for spatial grain size variability on the surface of and within beaches. Journal of Marine Science and Engineering 4: 38.

    Article  Google Scholar 

  • Gavel, P. K., D. Dev, H. S. Parmar, S. Bhasin & A. K. Das, 2018. Investigations of peptide-based biocompatible injectable shape-memory hydrogels: differential biological effects on bacterial and human blood cells. ACS Applied Materials and Interfaces 10: 10729–10740.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, B. R., R. T. Patterson, E. G. Reinhardt, J. M. Galloway & H. M. Roe, 2019. An evaluation of methodologies for calibrating Itrax X-ray fluorescence counts with ICP-MS concentration data for discrete sediment samples. Chemical Geology 521: 12–27.

    Article  CAS  Google Scholar 

  • Haarsma, R. J., J. F. Mitchell & C. A. Senior, 1993. Tropical disturbances in a GCM. Climate Dynamics 8: 247–257.

    Article  Google Scholar 

  • Harris, F., S. R. Dennison & D. A. Phoenix, 2011. Anionic antimicrobial peptides from eukaryotic organisms and their mechanisms of action. Current Chemical Biology 5: 142–153.

    Article  CAS  Google Scholar 

  • Hughes, S. J., J. M. Santos, M. T. Ferreira, R. Caraca & A. M. Mendes, 2009. Ecological assessment of an intermittent Mediterranean river using community structure and function: evaluating the role of different organism groups. Freshwater Biology 54: 2383–2400.

    Article  Google Scholar 

  • Jensen, R. E., M. A. Cialone, R. S. Chapman, B. A. Ebersole, M. Anderson & L. Thomas, 2012. Lake Michigan Storm: Wave and Water Level Modeling. Engineer Research and Development Center Vicksburg MS Coastal and Hydraulics Lab.

  • Kihlman, S. & T. Kauppila, 2012. Effects of mining on testate amoebae in a Finnish lake. Journal of Paleolimnology 47: 1–15.

    Article  Google Scholar 

  • Kruskal, J. B., 1964. Non-metric multidimensional scaling: a numerical method. Psychometrika 29: 115129.

    Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Macumber, A. L., R. T. Patterson, J. M. Galloway, H. Falck & G. T. Swindles, 2018. Reconstruction of Holocene hydroclimatic variability in subarctic treeline lakes using lake sediment grain-size end-members. The Holocene 28: 845–857.

    Article  Google Scholar 

  • Magurran, A. E., 1988. Ecological Diversity and Its Measurement, Princeton University Press, Princeton:

    Book  Google Scholar 

  • Maintainer, K. & R. Kolde, 2019. Package “pheatmap” Type Package Title Pretty Heatmaps.

  • McGrory, E. R., C. Brown, N. Bargary, N. H. Williams, A. Mannix, C. Zhang, T. Henry, E. Daly, S. Nicholas, B. M. Petrunic & M. Lee, 2017. Arsenic contamination of drinking water in Ireland: a spatial analysis of occurrence and potential risk. Science of the Total Environment 579: 863–1875.

    Article  CAS  Google Scholar 

  • McKerrow, W. S. & A. M. Ziegler, 1971. The Lower Silurian paleogeography of New Brunswick and adjacent areas. The Journal of Geology 79: 635–646.

    Article  Google Scholar 

  • Medioli, F. S. & D. B. Scott, 1983. Holocene Arcellacea (Thecamoebians) from Eastern Canada (No. 21), Cushman Foundation for Foraminiferal Research, Ithaca:

    Google Scholar 

  • Miller, K. B., C. E. Brett & K. M. Parsons, 1988. The paleoecologic significance of storm-generated disturbance within a Middle Devonian muddy epeiric sea. Palaios 3(1): 35–52.

    Article  CAS  Google Scholar 

  • Mitchell, J. F. B., S. Manabe, T. Tokioka & V. Meleshko, 1990. Equilibrium climate change and its implications for the future. Climate Change: The IPCC Scientific Assessment 131: 172.

    Google Scholar 

  • Morales, N. A., D. Martínez, J. V. García-Meza, I. Labastida, M. A. Armienta, I. Razo & R. H. Lara, 2015. Total and bioaccessible arsenic and lead in soils impacted by mining exploitation of Fe-oxide-rich ore deposit at Cerro de Mercado, Durango, Mexico. Environmental Earth Sciences 73: 3249–3261.

    Article  CAS  Google Scholar 

  • Murray, M. R., 2002. Is laser particle size determination possible for carbonate-rich lake sediments? Journal of Paleolimnology 27: 173–183.

    Article  Google Scholar 

  • Nasser, N. A. & R. T. Patterson, 2015. Conicocassis, a new genus of Arcellinina (testate lobose amoebae). Palaeontologia Electronica 18(46A): 1–11.

  • Nasser, N. A., R. T. Patterson, H. M. Roe, J. M. Galloway, H. Falck, M. J. Palmer, C. Spence, H. Sanei, A. L. Macumber & L. A. Neville, 2016. Lacustrine Arcellinina (testate amoebae) as bioindicators of arsenic contamination. Microbial Ecology 72: 130–149.

    Article  CAS  PubMed  Google Scholar 

  • Nasser, N. A., R. T. Patterson, H. M. Roe, J. M. Galloway, H. Falck & H. Sanei, 2020a. Use of Arcellinida (testate lobose amoebae) arsenic tolerance limits as a novel tool for biomonitoring arsenic contamination in lakes. Ecological Indicators 113: 106177.

    Article  CAS  Google Scholar 

  • Nasser, N. A., R. T. Patterson, J. M. Galloway & H. Falck, 2020b. Intra-lake response of Arcellinida (testate lobose amoebae) to gold mining-derived arsenic contamination in northern Canada: Implications for environmental monitoring. Peer J 8: e9054.

  • New Brunswick Department of Environment and Local Government Lake Water Quality Data, 2020. Chart for Arsenic [available on internet at https://www.elgegl.gnb.ca/LakesNB-NBLacs/en/Sample/LocationResultChart?id=29]. Accessed 1 Feb 2021.

  • Ogden, G. G. & R. H. Hedley, 1980. An atlas of freshwater testate amoebae. Soil Science 130: 176.

    Article  Google Scholar 

  • Oliva, F., A. E. Viau, M. C. Peros & M. Bouchard, 2018. Paleotempestology database for the western North Atlantic Basin. The Holocene 28: 1664–1671.

    Article  Google Scholar 

  • Onishi, H. & E. B. Sandell, 1954. Photometric determination of traces of antimony with Rhodamine B after sulfide precipitation. Analytica Chimica Acta 11: 44–450.

    Article  Google Scholar 

  • Pachauri, R. K., M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, J. A. Church, L Clarke, Q. Dahe, P. Dasgupta & N. K. Dubash, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: 151.

  • Pajari, G. E. & N. Rast, 1973. The Harvey volcanic area. In Geology of New Brunswick, Field Guide to Excursions, New England Intercollegiate Geological Conference, Department of Geology, University of New Brunswick, Fredericton, New Brunswick, Trip A-14 and B-11: 119–123.

  • Patterson, R. T. & E. Fishbein, 1989. Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research. Journal of Paleontology 63: 245–248.

    Article  Google Scholar 

  • Patterson, R. T. & A. Kumar, 2002. A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 180: 225–251.

    Article  Google Scholar 

  • Patterson, R. T., K. D. MacKinnon, D. B. Scott & F. S. Medioli, 1985. Arcellaceans (“thecamoebians”) in small lakes of New Brunswick and Nova Scotia; modern distribution and Holocene stratigraphic changes. The Journal of Foraminiferal Research 15: 114–137.

    Article  Google Scholar 

  • Patterson, R. T., T. Baker & S. M. Burbidge, 1996. Arcellaceans (thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario lakes. The Journal of Foraminiferal Research 26: 172–183.

    Article  Google Scholar 

  • Patterson, R. T., E. D. Lamoureux, L. A. Neville & A. L. Macumber, 2013. Arcellacea (testate lobose amoebae) as pH indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada. Microbial Ecology 65: 541–554.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, R. T., V. Mazzella, A. L. Macumber, B. R. Gregory, C. W. Patterson, N. A. Nasser, H. M. Roe, J. M. Galloway & E. G. Reinhardt, 2020. A novel protocol for mapping the spatial distribution of storm derived sediment in lakes. SN Applied Sciences 2: 1–16.

    Article  Google Scholar 

  • Payne, R. J., 2011. Can testate amoeba-based palaeohydrology be extended to fens? Journal of Quaternary Science 26: 15–27.

    Article  Google Scholar 

  • Peng, Y., J. Xiao, T. Nakamura, B. Liu & Y. Inouchi, 2005. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth and Planetary Science Letters 233: 467–479.

    Article  CAS  Google Scholar 

  • Pilarczyk, J. E., T. Dura, B. P. Horton, S. E. Engelhart, A. C. Kemp & Y. Sawai, 2014. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeography, Palaeoclimatology, Palaeoecology 413: 144–157.

    Article  Google Scholar 

  • R core Team, 2014. R: A Language and Environment for Statistical Computing. http://www.R-project.org.

  • Rango, T., A. Vengosh, G. Dwyer & G. Bianchini, 2013. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Water Research 47: 5801–5818.

    Article  CAS  PubMed  Google Scholar 

  • Rao, C. R., 1995. A Review of Canonical Coordinates and an Alternative to Correspondence Analysis Using Hellinger Distance. Qüestiió: quaderns d'estadística i investigació operativa.

  • Reinhardt, E. G., J. Blenkinsop & R. T. Patterson, 1998a. Assessment of a Sr isotope vital effect (87Sr/86Sr) in marine taxa from Lee Stocking Island, Bahamas. Geo-Marine Letters 18: 241–246.

    Article  Google Scholar 

  • Reinhardt, E. G., A. P. Dalby, A. Kumar & R. T. Patterson, 1998b. Arcellaceans as pollution indicators in mine tailing contaminated lakes near Cobalt, Ontario, Canada. Micropaleontology 44: 131–148.

    Article  Google Scholar 

  • Riou, L., N. A. Nasser, R. T. Patterson, B. R. Gregory, J. M. Galloway & H. Falck, 2021. Lacustrine Arcellinida (testate lobose amoebae) as bioindicators of arsenic concentration within the Yellowknife City Gold Project, Northwest Territories, Canada. Limnologica 87: 125862.

    Article  CAS  Google Scholar 

  • Roe, H. M., R. T. Patterson & G. T. Swindles, 2010. Controls on the contemporary distribution of lake thecamoebians (testate amoebae) within the Greater Toronto Area and their potential as water quality indicators. Journal of Paleolimnology 43: 955–975.

    Article  Google Scholar 

  • Scott, D. B. & J. O. R. Hermelin, 1993. A device for precision splitting of micropaleontological samples in liquid suspension. Journal of Paleontology 67: 151–154.

    Article  Google Scholar 

  • Siemensma, F. J., 2019. Microworld, World of Amoeboid Organisms. World-Wide Electronic Publication, Kortenhoef.

  • Suzuki, R. & H. Shimodaira, 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22(12): 1540–1542.

  • Taiyun, M. & T. Wei, 2016. Title Visualization of a Correlation Matrix.

  • Tsyganov, A. N., E. A. Malysheva, A. A. Zharov, T. V. Sapelko & Y. A. Mazei, 2019. Distribution of benthic testate amoeba assemblages along a water depth gradient in freshwater lakes of the Meshchera Lowlands, Russia, and utility of the microfossils for inferring past lake water level. Journal of Paleolimnology 62: 137–150.

    Article  Google Scholar 

  • Van Hengstum, P. J., E. G. Reinhardt, J. I. Boyce & C. Clark, 2007. Changing sedimentation patterns due to historical land-use change in Frenchman’s Bay, Pickering, Canada: evidence from high-resolution textural analysis. Journal of Paleolimnology 37: 603–618.

    Article  Google Scholar 

  • Ward, J. H., Jr., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236–244.

    Article  Google Scholar 

  • Webster, P. J., G. J. Holland, J. A. Curry & H. R. Chang, 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 1844–1846.

    Article  CAS  PubMed  Google Scholar 

  • Weltje, G. J. & M. A. Prins, 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sedimentary Geology 162: 39–62.

    Article  Google Scholar 

  • Weltje, G. J. & M. A. Prins, 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology 202: 409–424.

    Article  Google Scholar 

  • Weltje, G. J., M. R. Bloemsma, R. Tjallingii, D. Heslop, U. Röhl & I. W. Croudace, 2015. Prediction of geochemical composition from XRF core scanner data: a new multivariate approach including automatic selection of calibration samples and quantification of uncertainties. In Micro-XRF Studies of Sediment Cores. Springer, Dordrecht: 507–534.

Download references

Acknowledgements

We thank Jochen Schroer of NATECH Environmental Services for providing a shapefile for the Baseline Bathymetry Map. We also acknowledge the contributions of Dr. Sheryl Bartlett, Chairperson New Brunswick Alliance of Lake Associations and Past Chairperson of the Harvey Lake Association for facilitating the research on Harvey Lake. We thank Roy T. Patterson for contributing his time and a boat for sample collection and to Zacchaeus Compson, University of New Brunswick, for aiding in the field collection of samples. We acknowledge the very helpful comments and data checking provided by the anonymous reviewers that significantly improved the manuscript.

Funding

This work was supported by NSERC Discovery (#RGPIN05329) and NRCan Clean Technology (#CGP-17-0704) Grants to RTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Atasiei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Jasmine Saros

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2022_4912_MOESM1_ESM.csv

Supplementary file1 (CSV 5 kb) Appendix 1 Environmental variables (concentration of elements in mg/kg) in the 33 surface-sediment samples

Supplementary file2 (CSV 2 kb) Appendix 2 Arcellinida species count for the 33 surface-sediment samples

10750_2022_4912_MOESM3_ESM.pdf

Supplementary file3 (PDF 6 kb) Appendix 3 A Q-mode cluster analysis dendrogram of the 33 surface-sediment samples. The red number is the approximate unbiased P-value

Supplementary file4 (XLSX 27 kb) Appendix 4 Spearman Rank Correlation Correlogram for all variables in Harvey Lake

Supplementary file5 (XLSX 28 kb) Appendix 5 Spearman Rank Correlation P-value results for all variables in Harvey Lake

10750_2022_4912_MOESM6_ESM.xlsx

Supplementary file6 (XLSX 18 kb) Appendix 6 Assemblage 1 (NWSA) Samples with Associated Variables (Elements and Arcellinida)

10750_2022_4912_MOESM7_ESM.xlsx

Supplementary file7 (XLSX 14 kb) Appendix 7 Assemblage 2 (AI) Samples with Associated Variables (Elements and Arcellinida)

10750_2022_4912_MOESM8_ESM.xlsx

Supplementary file8 (XLSX 13 kb) Appendix 8 Assemblage 3 (NSWA) Samples with Associated Variables (Elements and Arcellinida)

10750_2022_4912_MOESM9_ESM.xlsx

Supplementary file9 (XLSX 13 kb) Appendix 9 Assemblage 4 (NSWB) Samples with Associated Variables (Elements and Arcellinida)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atasiei, D., Nasser, N.A., Patterson, C.W. et al. Impact of Post-Tropical Storm Arthur (2014) on benthic Arcellinida assemblage dynamics in Harvey Lake, New Brunswick, Canada. Hydrobiologia 849, 3041–3059 (2022). https://doi.org/10.1007/s10750-022-04912-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04912-x

Keywords

Navigation