Skip to main content

Advertisement

Log in

Stream morphology, water dynamics, and agrochemicals are important drivers of periphyton biomass in subtropical streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Several factors affect periphyton biomass by acting at local and landscape levels simultaneously. Thereunder, we quantified local and land-use variables in a gradient of subtropical streams at the transboundary border between Brazil and Paraguay to determine the influence of some factors (morphology, water dynamics, nutrients, light availability, land use, and number of agrochemicals) on periphyton biomass. We sampled 24 streams (12 in Brazil and 12 in Paraguay) in three different moments (February, July, and November 2019). Biomass was proxied by chlorophyll-a and ash-free dry mass. We also estimated the autotrophic index of periphytic communities as the ratio between ash-free dry mass and chlorophyll-a values. We found that periphyton biomass was structured mainly by stream morphology, water dynamics, and the number of agrochemicals (pesticides) present in the water. Surprisingly, we also found that light availability influenced biomass to a smaller extent, whereas nutrients did not exhibit a significant effect. Our results highlight the influence of stream morphology, water dynamics, and agrochemicals on aquatic biota, demonstrating the importance of conservation of local and regional environments to support the primary productivity and ecosystem functions in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available in the Limnologica repository, https://www.sciencedirect.com/science/article/abs/pii/S0075951121000566?via%3Dihub

References

  • Allan, J. D., M. M. Castilho & K. A. Kapps, 2021. Stream ecology: structure and function of running waters, Springer, Cham:

    Book  Google Scholar 

  • Annet, R., H. R. Habibi & A. Hontela, 2014. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Journal of Applied Toxicology 34: 458–479.

    Article  CAS  Google Scholar 

  • APHA, Awwa, WEF, 2012. Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, Washington, DC:

    Google Scholar 

  • Becker, R., et al., 2021. Pesticides in surface water from Brazil and Paraguay cross-border region: Screening using LC-QTOF MS and correlation with land use and occupation through multivariate analysis. Microchemical Journal 168: 106502.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology: freshwater benthic ecosystems Academic Press, San Diego, CA: 31–56.

    Chapter  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multi-model inference: a practical information – theoretic approach, Springer, New York:

    Google Scholar 

  • Capps, K. A. & A. S. Flecker, 2015. High impact of low-trophic-position invaders: Nonnative grazers alter the quality and quantity of basal food resources. Freshwater Science 34: 784–796.

    Article  Google Scholar 

  • Day, K. E., 1993. Short-term effects of herbicides on primary productivity of periphyton in lotic environments. Ecotoxicology 2: 123–138.

    Article  CAS  PubMed  Google Scholar 

  • Downing, H. F., M. E. Delorenzo, M. H. Fulton, G. I. Scott, C. J. Madden & J. R. Kucklick, 2004. Effects of the agricultural pesticides Atrazine, Chlorothalonil, and Endosulfan on South Florida microbial assemblages. Ecotoxicology 13: 245–260.

    Article  CAS  PubMed  Google Scholar 

  • Esteves, S. M., S. F. P. Almeida, S. Gonçalves, F. Rimet, A. Bouchez & E. Figueira, 2018. Sensitive vs. tolerant Nitzschia palea (Kützing) W. Smith strains to atrazine: a biochemical perspective. Ecotoxicology 27: 860–870.

    Article  CAS  PubMed  Google Scholar 

  • Feminella, J. W. & C. P. Hawkings, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society 14: 465–509.

    Article  Google Scholar 

  • Fenoglio, S., J. M. T. Figueroa, A. Doretto, E. Falasco & F. Bona, 2020. Aquatic insects and benthic diatoms: a history of biotic relationships in freshwater ecosystems. Water 12: 2934.

    Article  Google Scholar 

  • Ferragut, C. & D. C. Bicudo, 2012. Effect of N and P enrichment on periphytic algal community succession in a tropical oligotrophic reservoir. Limnology 13: 131–141.

    Article  Google Scholar 

  • Garrett, R. G., 2018. Package ‘rgr’. R package version 1.1.15. https://cran.r-project.org/web/packages/rgr/rgr.pdf.

  • Heino, J., et al., 2015. Metacommunity organization, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Hill, W. R., S. E. Fanta & B. J. Roberts, 2009. Quantifying phosphorus and light effects in stream algae. Limnology and Oceanography 54: 368–380.

    Article  CAS  Google Scholar 

  • Hill, W. R., B. J. Roberts, S. N. Francoeur & S. E. Fanta, 2011. Resource synergy in stream periphyton communities. Journal of Ecology 99: 454–463.

    Google Scholar 

  • Lambrecht, R. W., D. A. Tavares, T. R. Santos & C. Ferragut, 2019. Responses of periphyton biomass and nutrient status to experimental enrichment and its relationships with changes in seston nutrient content and chlorophyll-a. Hydrobiologia 836: 141–153.

    Article  CAS  Google Scholar 

  • Liess, A. & H. Hillebrand, 2004. Invited review: direct and indirect effects in herbivore – periphyton interactions. Archiv Für Hydrobiologie 159: 433–453.

    Article  Google Scholar 

  • Lima, J. A., J. Labanowski, M. C. Bastos, R. Zanella, O. D. Prestes, J. P. R. Vargas, L. Mondamert, E. Granado, M. Zafar, A. Troian, T. Le Guet & R. S. Santos, 2020. “Modern agriculture” transfers many pesticides to watercourses: a case study of a representative rural catchment of southern Brazil. Environmental Science and Pollution Research 27: 10581–10598.

    Article  CAS  Google Scholar 

  • Magirl, C. S., J. W. Gartner, G. M. Smart & R. H. Webb, 2009. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah. Water Resources Research 45: W05427.

    Article  Google Scholar 

  • Martinelli, L. A., R. Naylor, P. M. Vitousek & P. Moutinho, 2010. Agriculture in Brazil: impacts, costs, and opportunities for a sustainable future. Environmental Sustainability 2: 431–438.

    Google Scholar 

  • Mazerolle, M. J., 2020. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3–1. https://cran.r-project.org/package=AICcmodavg.

  • McIntosh, A. R. & C. R. Townsend, 1996. Interactions between fish, grazing invertebrates and algae in a New Zealand stream: a trophic cascade mediated by fish-induced changes to grazer behaviour? Oecologia 108: 174–181.

    Article  PubMed  Google Scholar 

  • Moerke, A. H., C. R. Ruetz, T. N. Simon & C. M. Pringle, 2017. Macroconsumer–resource interactions. In Hauer, F. R. & G. Lamberti (eds), Methods in stream ecology: Volume 1: Ecosystem structure Academic Press: 399–412.

    Chapter  Google Scholar 

  • Murdock, J. N., F. D. Shields Jr. & R. E. Lizotte Jr., 2013. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff. Ecotoxicology 22: 215–230.

    Article  CAS  PubMed  Google Scholar 

  • Naimi, B., N. A. Hamm, A. K. Skidmore & A. G. Toxopeus, 2014. Where is positional uncertainty a problem for species distribution modelling. Ecography 37: 191–203.

    Article  Google Scholar 

  • O’Brien, P. J. & J. D. Wehr, 2010. Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. Hydrobiologia 657: 89–105.

    Article  CAS  Google Scholar 

  • Oksanen J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2020. Package ‘vegan’. R package version 2.5–7. http://cran.rproject.org/web/packages/vegan/vegan.pdf.

  • Oliveira, R. C., L. K. Vilas Boas & C. C. Z. Branco, 2016. Assessment of the potential toxicity of glyphosate-based herbicides on the photosynthesis of Nitella microcarpa var. wrightii (Charophyceae). Phycologia 55: 577–584.

    Article  CAS  Google Scholar 

  • Ometto, J. P. H. B., L. A. Martinelli, M. V. Ballester, A. Gessner, A. V. Krusche, R. L. Victoria & M. Williams, 2000. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracibaca river basin, south-east Brazil. Freshwater Biology 44: 327–337.

    Article  Google Scholar 

  • Ouchi-Melo, L. S., B. Amaral, D. A. Tavares, E. C. R. Bartozek, J. E. Souza, L. H. G. Pereira, M. R. Auricchio, M. X. Silva, N. P. Toyama, P. H. Nunes, R. W. Lambrecht & C. K. Peres, 2021. Brazilian vs. Paraguayan streams: differences in water quality in a cross-border subtropical region. Limnologica 90: 125904.

    Article  CAS  Google Scholar 

  • Pereira, L. H. G., J. R. C. Castro, P. M. H. Vargas, J. A. M. Gomez & C. Oliveira, 2021. The use of an integrative approach to improve accuracy of species identification and detection of new species in studies of stream fish diversity. Genetica 149: 103–116.

    Article  CAS  PubMed  Google Scholar 

  • Pesce, S., I. Batisson, C. Bardot, C. Fajon, C. Portelli, B. Montuelle & J. Bohatier, 2009. Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicology and Environmental Safety 72: 1905–1912.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, C. G., 1996. Response of algae to natural physical disturbance. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology: freshwater benthic ecosystems Academic Press Inc, San Diego, CA: 373–402.

    Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll-a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    Article  CAS  Google Scholar 

  • Stevenson, R. J., M. L. Bothwell & R. L. Lowe, 1996. Algal Ecology: freshwater benthic ecosystems, Academic Press, San Diego:

    Google Scholar 

  • Tsui, M. T. K. & L. M. Chu, 2003. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52: 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  • Vera, M. S., L. Lagomarsino, M. Sylvester, G. L. Pérez, P. Rodríguez, H. Mugni, R. Sinistro, M. Ferraro, C. Bonetto, H. Zagarese & H. Pizarro, 2010. New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19: 710–721.

    Article  CAS  PubMed  Google Scholar 

  • Vera, M. S., E. Di Fiori, L. Lagomarsino, R. Sinistro, R. Escarey, L. Lummato, A. Juaréz, M. C. R. Molina, G. Tell & H. Pizarro, 2012. Direct and indirect effects of the glyphosate formulation Glifosato Atanor® on freshwater microbial communities. Ecotoxicology 21: 1805–1816.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, T., J. L. Pereira, N. Abrantes, S. F. P. Almeida, A. M. V. M. Soares & F. Gonçalves, 2014. Toxicity testing with the benthic diatom Navicula libonensis (Schoeman 1970): procedure optimization and assessment of the species sensitivity to reference chemicals. Bulletin of Environmental Contamination and Toxicology 93: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, T., M. Santos, J. I. Santos, A. T. Luís, M. J. Pereira, N. Abrantes, F. J. M. Gonçalves & J. L. Pereira, 2021. Testing the response of benthic diatom assemblages to common riverine contaminants. Science of the Total Environment 755: 142534.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, R. G., 1983. Periphyton of freshwater ecosystems development, The Hague. Dr. W. Junk Publishers, Developments Hydrobiology:, 17.

    Book  Google Scholar 

  • Winkelmann, C., J. Schneider, D. Mewes, S. I. Schmidt, S. Worischka, C. Hellmann & J. Benndorf, 2014. Top-down and bottom-up control of periphyton by benthivorous fish and light supply in two streams. Freshwater Biology 59: 803–818.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Itaipu Technological Park Foundation (FPTI), Itaipu Binacional and Federal University of Latin American Integration (UNILA) (Project 4500048483/2018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ECRB, RWL, SZ-A, MRA and CKP. The first draft of the manuscript was written by ECRB and SZ-A and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elaine C. R. Bartozek.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartozek, E.C.R., Lambrecht, R.W., Zorzal-Almeida, S. et al. Stream morphology, water dynamics, and agrochemicals are important drivers of periphyton biomass in subtropical streams. Hydrobiologia 849, 3031–3039 (2022). https://doi.org/10.1007/s10750-022-04911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04911-y

Keywords

Navigation