Skip to main content
Log in

Responses of periphyton biomass and nutrient status to experimental enrichment and its relationships with changes in seston nutrient content and chlorophyll-a

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Periphyton development is generally negatively influenced by eutrophication in shallow lakes and reservoirs. To better understand the nutrient enrichment effect on the periphyton and how the changes in seston may interfere in community responses, we performed an experiment with combined and isolated N and P addition during the enrichment and no-enrichment period. Changes in biomass, nutrient content and N and P stoichiometry of periphyton and seston under enrichment were evaluated. Glass slides were used to assess periphyton responses in open-bottom mesocosms. Sampling was performed on the 7th, 14th and 28th day of experimental period. The isolated and combined P enrichment increased periphyton and seston chlorophyll-a on the 7th day, but only seston responded to isolated P addition on the 14th day. The isolated N addition had no significant effect on periphyton and seston chlorophyll-a. After interrupting the enrichment, there was high loss of biomass, changes in P content and a predominance of heterotrophic components in the periphyton. We conclude that periphyton responds rapidly to P enrichment, which has been identified as the primary limiting nutrient. However, periphyton was sensitive to changes in seston, which can interfere with nutrient availability, through nutrient interception, and light availability, through shading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, J. M., 1976. An ignition method for determination of total phosphorus in lake sediments. Water Research 10: 329–331.

    Article  CAS  Google Scholar 

  • APHA, AWWA and WEF, 2012. Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Bicudo, C. E. M., C. F. Carmo, D. C. Bicudo, R. Henry, A. C. S. Pião, C. M. Santos & M. R. M. Lopes, 2002. Morfologia e morfometria de três reservatórios do PEFI. In Bicudo, D. C., M. C. Forti & C. E. M. Bicudo (eds), Parque Estadual das Fontes do Ipiranga: unidade de conservação ameaçada pela urbanização de São Paulo. Editora Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo: 141–158.

    Google Scholar 

  • Borduqui, M. & C. Ferragut, 2012. Factors determining periphytic algae succession in a tropical hypereutrophic reservoir. Hydrobiologia 683: 109–122.

    Article  CAS  Google Scholar 

  • Burkholder, J. M., 1996. Interactions of benthic algae with their substrata. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic, San Diego: 253–297.

    Chapter  Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.

    Article  CAS  Google Scholar 

  • DeNicola, D. M. & M. Kelly, 2014. Role of periphyton in ecological assessment of lakes. Freshwater Science 33(2): 619–638.

    Article  Google Scholar 

  • Dodds, W. K., 2003. The role of periphyton in phosphorous retention in shallow freshwater aquatic systems. Journal of Phycology 39: 840–849.

    Article  CAS  Google Scholar 

  • Dunck, B., D. C. Amaral, U. L. Fernandes, N. F. Santana, T. M. Lopes & L. Rodrigues, 2018. Herbivory effects on the periphytic algal functional diversity in lake ecosystems: an experimental approach. Hydrobiologia 816: 231–241.

    Article  Google Scholar 

  • Engle, D. L. & J. M. Melack, 1993. Consequences of riverine flooding for seston and the periphyton of floating meadows in an Amazon floodplain lake. Limnology and Oceanography 38: 1500–1520.

    Article  CAS  Google Scholar 

  • Fanta, S. E., W. R. Hill, T. B. Smith & B. J. Roberts, 2010. Applying the light: nutrient hypothesis to stream periphyton. Freshwater Biology 55: 931–940.

    Article  CAS  Google Scholar 

  • Fermino, F. S., C. E. M. Bicudo & D. C. Bicudo, 2011. Seasonal influence of nitrogen and phosphorus enrichment on the floristic composition of the algal periphytic community in a shallow tropical, mesotrophic reservoir (São Paulo, Brazil). Oecologia Australis 15: 476–493.

    Article  Google Scholar 

  • Fonseca, B. M. & C. E. M. Bicudo, 2010. How important can the presence/absence of macrophytes be in determining phytoplankton strategies in two tropical shallow reservoirs with different trophic status? Journal of Plankton Research 32: 31–46.

    Article  CAS  Google Scholar 

  • Frost, P. C., H. Hillebrand & M. Kahlert, 2005. Low algal carbon content and its effect on the C:P stoichiometry of periphyton. Freshwater Biology 50: 1781–1785.

    Article  CAS  Google Scholar 

  • Gaiser, E. E., D. L. Childers, R. D. Jones, J. F. Richards, L. J. Scinto & J. C. Trexler, 2006. Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography 51: 617–630.

    Article  CAS  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. International Biological Programmer. (Handbook, 8), 2ª ed. Blackwell Scientific Publications, Oxford: 213p.

    Google Scholar 

  • Guariento, R. D., L. S. Carneiro, A. Caliman, R. L. Bozelli & F. A. Esteves, 2011. How light and nutrients affect the relationship between autotrophic and heterotrophic biomass in a tropical black water periphyton community. Aquatic Ecology 45(4): 561–569.

    Article  Google Scholar 

  • Havens, K. E., T. L. East, R. H. Meeker & W. P. Davis, 1996. Phytoplankton and perifíton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. Journal of Plankton Research 18(4): 551–556.

    Article  Google Scholar 

  • Hill, W. R., S. E. Fanta & B. J. Roberts, 2009. Quantifying phosphorus and light effects in stream algae. Limnology and Oceanography 54: 368–380.

    Article  CAS  Google Scholar 

  • Hill, W. R., B. J. Roberts, S. N. Francoeur & S. E. Fanta, 2011. Resource synergy in stream periphyton communities. Journal of Ecology 99: 454–463.

    Google Scholar 

  • Hillebrand, H. & U. Sommer, 1999. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnology and Oceanography 44: 440–446.

    Article  Google Scholar 

  • Hwang, S. J., K. E. Havens & A. D. Steinman, 1998. Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwater Biology 40(4): 729–745.

    Article  CAS  Google Scholar 

  • Jones, J. R., D. V. Obrecht, B. D. Perkins, M. F. Knowlton, A. P. Thorpe, S. Watanabe, & R. R. Bacon, 2008. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes: an analysis of regional limnology. Lake and Reservoir Management 24: 155–180.

    Article  Google Scholar 

  • Kahlert, M. & K. Pettersson, 2002. The impact of substrate and lake trophy on the biomass and nutrient status of benthic algae. Hydrobiologia 486: 161–169.

    Article  Google Scholar 

  • Kahlert, M., A. T. Hasselrot, H. Hillebrand & K. Pettersson, 2002. Spatial and temporal variation in the biomass and nutrient status of epilithic algae in Lake Erken, Sweden. Freshwater Biology 47: 1–24.

    Article  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51: 95–109.

    Article  CAS  Google Scholar 

  • Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo & S. E. Charlton, 1984. River epilithon: toward a structural–functional model. Oikos 42: 10–12.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, London: 121p.

    Google Scholar 

  • Marker, A. F. H., H. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusion and recommendations. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 14: 91–106.

    CAS  Google Scholar 

  • Oliveira, D. E., C. Ferragut & D. C. Bicudo, 2010. Relationships between environmental factors, periphyton biomass and nutrient content in Garças Reservoir, a hypereutrophic tropical reservoir. Lakes and Reservoirs: Research and Management 15: 129–137.

    Article  CAS  Google Scholar 

  • Pellegrini, B. G., & C. Ferragut, 2018. Associations between epiphyton species composition and macrophyte diversity in a shallow tropical reservoir. Fundamental and Applied Limnology/Archiv für Hydrobiologie 191: 111–122.

    Google Scholar 

  • Pompêo, M. L. M. & V. Moschini-Carlos, 2003. Macrófitas aquáticas e perifíton: aspectos ecológicos e metodológicos. RIMA/FAPESP, São Carlos.

    Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Sanches, L. F., R. D. Guariento, A. Caliman, R. L. Bozelli & F. A. Esteves, 2011. Effects of nutrients and light on periphytic biomass and nutrient stoichiometry in a tropical black-water aquatic ecosystem. Hydrobiologia 669: 35–44.

    Article  CAS  Google Scholar 

  • Santos, S. A. M., T. R. Santos, M. S. Furtado, R. Henry & C. Ferragut, 2017. Periphyton nutrient content, biomass and algal community on artificial substrate: response to experimental nutrient enrichment and the effect of its interruption in a tropical reservoir. Limnology 19: 209–218.

    Article  CAS  Google Scholar 

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    Article  CAS  Google Scholar 

  • Sekar, R., V. P. Venugopalan, K. V. K. Nair & V. N. R. Rao, 2002. Nutrients dynamics and successional changes in a lentic freshwater biofilm. Freshwater Biology 47: 1893–1907.

    Article  Google Scholar 

  • Singer, G. A. & T. J. Battin, 2007. Anthropogenic subsidies alter consumer-resource stoichiometry, biodiversity, and food chains. Ecological Applications 17: 376–389.

    Article  PubMed  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.

    Article  CAS  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2001. Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46(2): 356–367.

    Article  Google Scholar 

  • Sterner, R. W., J. J. Elser, E. J. Fee, S. J. Guildford & T. H. Chrzanowski, 1997. The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. The American Naturalist 150: 663–684.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson, R. J., 1996. An introduction to algal ecology in freshwater benthic habits. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal ecology: freshwater benthic ecosystems. Academic, San Diego: 253–297.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1960. A manual of seawater analysis. Bulletin of Fisheries Research Board of Canada 125: 1–185.

    Google Scholar 

  • Trochine, C., M. Guerrieri, L. Liboriussen, P. Willems, T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2017. Factors controlling the stable isotope composition and C:N ratio of seston and periphyton in shallow lake mesocosms with contrasting nutrient loadings and temperatures. Freshwater Biology 62: 1596–1613.

    Article  CAS  Google Scholar 

  • Umbreit, W. W., R. H. Burris & J. F. Stauffer, 1964. Manometric Methods Applicable to the Study of Tissue Metabolism. Burgess Publishing Company, Minneapolis.

    Google Scholar 

  • Vadeboncoeur, Y., J. Kalff, K. Christoffersen & E. Jeppesen, 2006. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. Journal of the North American Benthological Society 25(2): 379–392.

    Article  Google Scholar 

  • Valderrama, G. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–112.

    Article  CAS  Google Scholar 

  • Wetzel R. G. & G. E. Likens, 1991. Limnological analyses. Springer, New York.

    Book  Google Scholar 

  • Wu, Y., J. Liu, & E. R. Rene, 2018. Periphytic biofilms: a promising nutrient utilization regulator in wetlands. Bioresource Technology 248: 44–48.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., X. Mei, R. D. Gulati & Z. Liu, 2015. Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study. Environmental Science and Pollution Research 22: 4418–4424.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support (Grant nº 2009/52253-4) and for a PhD Scholarship to RWL, DAT and TRS (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, FAPESP Grant nº 2013/03130-2, respectively). We are grateful to all the students and technicians involved in the laboratory and fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ferragut.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrecht, R.W., Tavares, D.A., Santos, T.R. et al. Responses of periphyton biomass and nutrient status to experimental enrichment and its relationships with changes in seston nutrient content and chlorophyll-a. Hydrobiologia 836, 141–153 (2019). https://doi.org/10.1007/s10750-019-3947-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3947-2

Keywords

Navigation