Skip to main content
Log in

Carbon fluxes in subtropical shallow lakes: contrasting regimes differ in CH4 emissions

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fluxes of carbon dioxide (CO2) and methane (CH4) in shallow lakes are strongly affected by dominant primary producers which mostly has been studied in temperate and boreal regions. We compared summer CO2 and CH4 fluxes (diffusion and ebullition) in littoral and pelagic zones of three subtropical shallow lakes with contrasting regimes: clear-vegetated, phytoplankton-turbid, and sediment-turbid, and assessed fluxes in different seasons in the clear-vegetated system. Significant differences among the lakes occurred only for CH4 fluxes. In the sediment-turbid lake we found undersaturated CH4 concentrations were below atmospheric equilibrium, implying CH4 uptake (< 0 mg m−2 day−1), likely due to low availability of organic matter. Differences between zones occurred in the clear-vegetated and phytoplankton-turbid lakes, with higher total CH4 emissions in the littoral than in the pelagic zones (mean: 4342 ± 895 and 983 ± 801 mg m−2 day−1, respectively). CO2 uptake (< < 0 mg m−2 day−1) occurred in the littoral of the phytoplankton-turbid lake (in summer), and in the pelagic of the clear-vegetated lake even in winter, likely associated with submerged macrophytes dominance. Our work highlights the key role of different primary producers regulating carbon fluxes in shallow lakes and points out that, also in the subtropics, submerged macrophyte dominance may decrease carbon emissions to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The database used for the present manuscript will be available at the Colibrí repository from Universidad de la República, www.colibri.udelar.edu.uy.

Code availability

Not applicable.

References

  • Aben, R. C. H., N. Barros, E. Van Donk, T. Frenken, S. Hilt, G. Kazanjian, L. P. M. Lamers, E. T. H. M. Peeters, J. G. M. Roelofs, L. N. De Senerpont Domis, S. Stephan, M. Velthuis, D. B. Van De Waal, M. Wik, B. F. Thornton, J. Wilkinson, T. Delsontro & S. Kosten, 2017. Cross continental increase in methane ebullition under climate change. Nature Communications 8: 1–8.

    Article  CAS  Google Scholar 

  • Almeida, R. M., G. N. Nóbrega, P. C. Junger, A. V. Figueiredo, A. S. Andrade, C. G. B. de Moura, D. Tonetta, E. S. Oliveira, F. Araújo, F. Rust, J. M. Piñeiro-Guerra, J. R. Mendonça, L. R. Medeiros, L. Pinheiro, M. Miranda, M. R. A. Costa, M. L. Melo, R. L. G. Nobre, T. Benevides, F. Roland, J. de Klein, N. O. Barros, R. Mendonça, V. Becker, V. L. M. Huszar & S. Kosten, 2016. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Frontiers in Microbiology 7: 1–13.

    Article  Google Scholar 

  • Atwood, T. B., E. Hammill, H. S. Greig, P. Kratina, J. B. Shurin, D. S. Srivastava & J. S. Richardson, 2013. Predator-induced reduction of freshwater carbon dioxide emissions. Nature Geoscience 6: 191–194.

    Article  CAS  Google Scholar 

  • Balmer, M. & J. Downing, 2011. Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters 1: 125–132.

    Article  Google Scholar 

  • Bansal, S., O. F. Johnson, J. Meier & X. Zhu, 2020. Vegetation affects timing and location of wetland methane emissions. Journal of Geophysical Research: Biogeosciences 125: e2020JG005777.

  • Bastviken, D., J. Cole, M. Pace & L. Tranvik, 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18: 1–12.

    Article  CAS  Google Scholar 

  • Bastviken, D., L. J. Tranvik, J. A. Downing & P. M. Crill & A. Enrich-prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu, J. J., T. DelSontro & J. A. Downing, 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications 10: 3–7.

    Article  CAS  Google Scholar 

  • Biderre-Petit, C., D. Jézéquel, E. Dugat-Bony, F. Lopes, J. Kuever, G. Borrel, E. Viollier, G. Fonty & P. Peyret, 2011. Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiology Ecology 77: 533–545.

    Article  CAS  PubMed  Google Scholar 

  • Bridgewater, L. L., R. B. Baird, A. D. Eaton, E. W. Rice, American Public Health. Association, American Water Works. Association & Water Environment Federation (eds), 2017. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Brothers, S. M., S. Hilt, K. Attermeyer, H. P. Grossart, S. Kosten, B. Lischke, T. Mehner, N. Meyer, K. Scharnweber, & J. Kohler, 2013. A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake. Ecosphere 4: art137.

  • Brown, J. H., 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Cole, J. J., 2013. Freshwater ecosystems and the carbon cycle. In Kinne O, (ed.), Excellence in Ecology. Oldendorf/Luhe: International Ecology Institute.

  • Cole, J. J. & N. F. Caraco, 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography 43: 647–656.

    Article  CAS  Google Scholar 

  • Cole, J. J., N. F. Caraco, G. W. Kling & T. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lake. Science 265: 1568–1570.

    Article  CAS  PubMed  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Colina, M., M. Meerhoff, G. Pérez, A. J. Veraart, P. L. E. Bodelier & S. Kosten, 2021. Trophic and non-trophic effects of fish and macroinvertebrates on carbon emissions. Freshwater Biology 63: 1831.

    Article  CAS  Google Scholar 

  • Davidson, T. A., J. Audet, J. C. Svenning, T. L. Lauridsen, M. SØndergaard, F. Landkildehus, S. E. Larsen & E. Jeppesen, 2015. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biology 21: 4449–4463.

    Article  PubMed  Google Scholar 

  • Davidson, T. A., J. Audet, E. Jeppesen, F. Landkildehus, T. L. Lauridsen, M. Søndergaard & J. Syväranta, 2018. Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nature Climate Change 8: 156–160.

    Article  CAS  Google Scholar 

  • de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: A review. Hydrobiologia 740: 13–24.

    Article  CAS  Google Scholar 

  • DelSontro, T., L. Boutet, A. St-Pierre, P. A. del Giorgio & Y. T. Prairie, 2016. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnology and Oceanography 61: S62–S77.

    Article  Google Scholar 

  • DelSontro, T., J. J. Beaulieu, & J. A. Downing, 2018. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters 64–75.

  • Doi, H., 2009. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology 51: 57–64.

    Article  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. Abundance and Size Distribution of Lakes, Ponds and Impoundments. Limnology and Oceanography 51: 469–478.

    Article  Google Scholar 

  • Grasset, C., G. Abril, R. Mendonça, F. Roland & S. Sobek, 2019. The transformation of macrophyte-derived organic matter to methane relates to plant water and nutrient contents. Limnology and Oceanography 64: 1737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilt, S., S. Brothers, E. Jeppesen, A. J. Veraart & S. Kosten, 2017. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. BioScience 67: 928–936.

    Article  Google Scholar 

  • Hofmann, H., L. Federwisch & F. Peeters, 2010. Wave-induced release of methane: Littoral zones as a source of methane in lakes. Limnology and Oceanography 55: 1990–2000.

    Article  CAS  Google Scholar 

  • Holgerson, M. A. & P. A. Raymond, 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience 9: 222–226.

    Article  CAS  Google Scholar 

  • Hothorn, T., F. Bretz, P. Westfall & R. M. Heiberger, 2016. Package “multcomp” Title Simultaneous Inference in General Parametric Models. Biometrical Journal 50: 346–363.

    Article  Google Scholar 

  • Huss, A. A. & J. D. Wehr, 2004. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake. Microbial Ecology 47: 305–315.

    Article  CAS  PubMed  Google Scholar 

  • IHA, 2010. GHG Measurement Guidelines for Freshwater Reservoirs. In Goldenfum, J. A. (ed.) UNESCO. International Hydropower Association, London.

  • ISO 10260, 1992. Water Quality - Measurement of Biochemical Parameters - Spectrometric Determination of the Chlorophyll-a Concentration, 1st ed. International Organization for Standardization, Geneva. 1992–07–15.

  • Janssen, A. B. G., S. Hilt, S. Kosten, J. J. M. de Klein, H. W. Paerl & D. B. Van de Waal, 2020. Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology 66: 1–12.

    Article  Google Scholar 

  • Jansson, M., L. Persson, A. M. De Roos, R. I. Jones & L. J. Tranvik, 2007. Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology and Evolution 22: 316–322.

    Article  PubMed  Google Scholar 

  • Jeppesen, E., D. Trolle, T. A. Davidson, R. Bjerring, M. Søndergaard, L. S. Johansson, T. L. Lauridsen, A. Nielsen, S. E. Larsen & M. Meerhoff, 2016. Major changes in CO2 efflux when shallow lakes shift from a turbid to a clear water state. Hydrobiologia 778: 33–44.

    Article  CAS  Google Scholar 

  • Juutinen, S., J. Alm, T. Larmola, J. T. Huttunen, M. Morero, P. J. Martikainen & J. Silvola, 2003. Major implication of the littoral zone for methane release from boreal lakes. Global Biogeochemical Cycles. https://doi.org/10.1029/2003GB002105.

    Article  Google Scholar 

  • Kling, G. W., G. W. Kipphut & M. C. Miller, 1992. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240: 23–36.

    Article  CAS  Google Scholar 

  • Kosten, S., A. Kamarainen, E. Jeppesen, E. H. Van Nes, E. T. H. M. Peeters, N. Mazzeo, L. Sass, J. Hauxwell, N. Hansel-welch, T. L. Lauridsen, M. Søndergaard, R. W. Bachmann, G. Lacerot & M. Scheffer, 2009. Climate-related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology 15: 2503–2517.

    Article  Google Scholar 

  • Kosten, S., F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer & J. J. Cole, 2010. Climate-dependent CO2 emissions from lakes. Global Biogeochemical Cycles. https://doi.org/10.1029/2009GB003618.

    Article  Google Scholar 

  • Kruk, C., L. Rodriguez-Gallego, F. Quintans, G. Lacerot, F. Scasso, N. Mazzeo, M. Meerhoff, & J. C. Paggi, 2006. Biodiversidad y calidad de agua de 18 pequeñas lagunas en la costa sureste de Uruguay Bases para la Conservación y el Manejo de la Costa Uruguaya: 599–610.

  • Lemoine, D. G., F. Mermillod-Blondin, M. H. Barrat-Segretain, C. Massé & E. Malet, 2012. The ability of aquatic macrophytes to increase root porosity and radial oxygen loss determines their resistance to sediment anoxia. Aquatic Ecology 46: 191–200.

    Article  CAS  Google Scholar 

  • Li, W., X. Xu, J. Yao, N. Tanaka, O. Nishimura & H. Ma, 2019. Combined effects of elevated carbon dioxide and temperature on phytoplankton-zooplankton link: a multi-influence of climate change on freshwater planktonic communities. Science of the Total Environment 658: 1175–1185.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., J. Shang, C. Zhang, W. Zhang, L. Niu, L. Wang, & H. Zhang, 2021. The role of freshwater eutrophication in greenhouse gas emissions: a review. Science of the Total Environment 768: 144582.

  • Magen, C., L. L. Lapham, J. W. Pohlman, K. Marshall, S. Bosman, M. Casso & J. P. Chanton, 2014. A simple headspace equilibration method for measuring dissolved methane. Limnology and Oceanography: Methods 12: 637–650.

    Google Scholar 

  • Marczak, L. B., R. M. Thompson & J. S. Richardson, 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88: 140–148.

    Article  PubMed  Google Scholar 

  • McGraw, K. O. & S. P. Wong, 1992. A common language effect size statistic. Psychological Bulletin 111: 361–365.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. T. de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Morales-Williams, A. M., A. D. Wanamaker, C. J. Williams & J. A. Downing, 2021. Eutrophication drives extreme seasonal CO2 flux in lake ecosystems. Ecosystems 24: 434–450.

    Article  CAS  Google Scholar 

  • Moss, B., S. Kosten, M. Meerhoff, R. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, L. De Meester, H. Pearl & M. Scheffer, 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.

    Article  Google Scholar 

  • Myhre, G., D. Shindell, F. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura & H. Zhan, 2013. Anthropogenic and Natural Radiative Forcing, Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 659–740.

    Google Scholar 

  • Nakagawa, S. & I. C. Cuthill, 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews 82: 591–605.

    Article  PubMed  Google Scholar 

  • Natchimuthu, S., B. Panneer Selvam & D. Bastviken, 2014. Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119: 403–413.

    Article  CAS  Google Scholar 

  • Odum, H. T., 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.

    Article  Google Scholar 

  • Oliveira Junior, E., T. van Bergen, J. Nauta, A. Budiša, R. Aben, S. Weideveld, C. Souza, C. Muniz, J. Roelofs, L. Lamers & S. Kosten, 2020. Water Hyacinth’s effect on greenhouse gas fluxes: a field study in a wide variety of tropical water bodies. Ecosystems 24: 988.

    Article  CAS  Google Scholar 

  • Pacheco, J. P., C. Iglesias, M. Meerhoff, C. Fosalba, G. Goyenola, F. Teixeira-de Mello, S. García, M. Gelós & F. García-Rodríguez, 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology-based approach. Hydrobiologia 646: 187–197.

    Article  CAS  Google Scholar 

  • Pacheco, F. S., F. Roland & J. A. Downing, 2014. Eutrophication reverses whole-lake carbon budgets. Inland Waters 4: 41–48.

    Article  CAS  Google Scholar 

  • Pacheco, J. P., C. Iglesias Frizzera, G. Goyenola, F. Teixeira de-Mello, C. Fosalba, A. Baattrup-Pedersen, M. Meerhoff & E. Jeppesen, 2021. Invasion of ceratium furcoides in subtropical lakes in Uruguay: environmental drivers and fish kill record during its bloom. Biological Invasions 23: 3597.

    Article  Google Scholar 

  • RStudio Team, 2018. RStudio: Integrated Development Environment for R, RStudio Team, Boston.

    Google Scholar 

  • Sander, R., 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics 15: 4399–4981.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. Hosper, M. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shalow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., S. Szabo, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences USA 100: 4040–4045.

    Article  CAS  Google Scholar 

  • Schneider, E. L. & S. Carlquist, 1996. Conductive tissue in Ceratophyllum demersus (Ceratophyllaceae). SIDA, Contributions to Botany 17: 437–443.

    Google Scholar 

  • Smith, V. H., 1998. Cultural Eutrophication of Inland, Estuarine, and Coastal Waters Successes, Limitations, and Frontiers in Ecosystem Science. Springer, New York: 7–49.

    Book  Google Scholar 

  • Sobek, S., T. DelSontro, N. Wongfun & B. Wehrli, 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophysical Research Letters. https://doi.org/10.1029/2011GL050144.

    Article  Google Scholar 

  • Sorrell, B. K. & M. T. Downes, 2004. Water velocity and irradiance effects on internal transport and metabolism of methane in submerged Isoetes alpinus and Potamogeton crispus. Aquatic Botany 79: 189–202.

    Article  CAS  Google Scholar 

  • Sorrell, B. K., M. T. Downes & C. L. Stanger, 2002. Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquatic Botany 72: 107–119.

    Article  Google Scholar 

  • Teixeira-De Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., J. J. Cole & Y. T. Prairie, 2018. The study of carbon in inland waters – from isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography Letters 3: 41–48.

    Article  Google Scholar 

  • Trolle, D., P. A. Staehr, T. A. Davidson, R. Bjerring, T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2012. Seasonal dynamics of CO2 flux across the surface of shallow temperate lakes. Ecosystems 15: 336–347.

    Article  CAS  Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • van Bergen, T. J. H. M., N. Barros, R. Mendonça, R. C. H. Aben, I. H. J. Althuizen, V. Huszar, L. P. M. Lamers, M. Lürling, F. Roland & S. Kosten, 2019. Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers. Limnology and Oceanography 64: 2129–2139.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198.

    Article  CAS  Google Scholar 

  • Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen & F. Roland, 2015. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geoscience 8: 933–936.

    Article  CAS  Google Scholar 

  • Xing, Y., P. Xie, H. Yang, A. Wu & L. Ni, 2006. The change of gaseous carbon fluxes following the switch of dominant producers from macrophytes to algae in a shallow subtropical lake of China. Atmospheric Environment 40: 8034–8043.

    Article  CAS  Google Scholar 

  • Xiong, J., J. T. Huang, L. Nie & B. D. Xiao, 2013. The effects of nutrient concentration on purification ability and eco-physiology of Ceratophyllum demersum. Acta Hydrobiologica Sinica 37: 1066–1072.

    CAS  Google Scholar 

  • Yan, X., X. Xu, M. Wang, G. Wang, S. Wu, Z. Li, H. Sun, A. Shi & Y. Yang, 2017. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Research 125: 449–457.

    Article  CAS  PubMed  Google Scholar 

  • Yan, X., X. Xu, M. Ji, Z. Zhang, M. Wang, S. Wu, G. Wang, C. Zhang & H. Liu, 2019. Cyanobacteria blooms: a neglected facilitator of CH4 production in eutrophic lakes. Science of the Total Environment 651: 466–474.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, N., H. Iguchi, H. Yurimoto, A. Murakami & Y. Sakai, 2014. Aquatic plant surface as a niche for methanotrophs. Frontiers in Microbiology 5: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yvon-Durocher, G., A. P. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, N. Thanh-Duc & P. A. Del Giorgio, 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507: 488–491.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Z. Fu, J. Zhong & W. Long, 2018. Low methane emission in rice cultivars with high radial oxygen loss. Plant and Soil 431: 1–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this paper in loving memory of our dear late friend Juan M. Clemente, Checho. We deeply thank the editorial assistance of Anne Mette Poulsen. We would also like to acknowledge Programa para el Desarrollo de las Ciencias Básicas (PEDECIBA-Geociencias, Uruguay) and Agencia Nacional de Investigación e Innovación (ANII, Uruguay) for their support to MC and the Academy Ecology Fund 2018, Royal Netherlands Academy of Arts and Sciences (KNAW, The Netherlands) for supporting our field work. MM is supported by PEDECIBA, ANII (Uruguay). We would also like to include a special thanks to everyone who helped out in the field work: Clementina Calvo, Lucía Cabrera, Maite Burwood and Carlos Iglesias.

Funding

Programa para el Desarrollo de las Ciencias Básicas, PEDECIBA-Geociencias, Uruguay; Agencia Nacional de Investigación e Innovación, ANII, Uruguay; Academy Ecology Fund 2018, Royal Netherlands Academy of Arts and Sciences (KNAW), The Netherlands.

Author information

Authors and Affiliations

Authors

Contributions

MC conceptualization, sampling campaigns, fieldwork design and data collection, data analyses, and writing; MM and SK conceptualization, fieldwork design, data analyses and writing; NS and JMC sampling campaigns and fieldwork design.

Corresponding author

Correspondence to Maite Colina.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent of participate

Not applicable.

Consent of publication

Not applicable.

Additional information

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Juan M. Clemente—deceased.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colina, M., Kosten, S., Silvera, N. et al. Carbon fluxes in subtropical shallow lakes: contrasting regimes differ in CH4 emissions. Hydrobiologia 849, 3813–3830 (2022). https://doi.org/10.1007/s10750-021-04752-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04752-1

Keywords

Navigation