Skip to main content
Log in

Carbon transfer from the submerged macrophyte Hydrilla verticillata to zooplankton: a 13C-labeled mesocosm study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Submerged macrophytes cannot be utilized directly by zooplankton. However, vegetation can serve as an organic carbon resource for heterotrophic bacteria, which are themselves accessible to zooplankton. We therefore hypothesize that submerged macrophytes supply a carbon source to zooplankton by increasing the availability of food such as heterotrophic bacteria. Here, we used stable carbon isotope (13C) labeling to trace the carbon flow from submerged macrophytes to zooplankton with a mesocosm experiment. The carbon stable isotope ratios of zooplankton and their potential food sources were analyzed in mesocosms planted with 13C-labeled Hydrilla verticillata (L. f.) Royle in comparison with the control in which plastic plants were planted. We found that all potential food resources of zooplankton, including phytoplankton, bacterioplankton, macrophyte-associated epiphyton and epibacteria, were significantly enriched with 13C in the presence of 13C-enriched H. verticillata. Zooplankton were significantly more enriched with 13C than phytoplankton, epiphyton and bacterioplankton but significantly less enriched with 13C than epibacteria. Based on a stable isotopic mixing model, we found a macrophyte carbon contribution of 30.5% to epibacteria and 14.7% to zooplankton. Our results indicated that macrophytes might be used by zooplankton as a carbon resource, mainly via a pathway involving epibacteria attached to macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data are available from the corresponding author upon reasonable request.

References

  • Agasild, H. & T. Nõges, 2005. Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. Journal of Plankton Research 27: 1155–1174.

    Article  Google Scholar 

  • Allanson, B. R., 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of RG Wetzel and HL Allen. Freshwater Biology 3: 535–542.

    Article  Google Scholar 

  • Allen, H. L., 1971. Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecological Monographs 41: 97–127.

    Article  Google Scholar 

  • Batt, R. D., S. R. Carpenter, J. J. Cole, M. L. Pace, T. J. Cline, R. A. Johnson & D. A. Seekell, 2012. Resources supporting the food web of a naturally productive lake. Limnology and Oceanography 57: 1443–1452.

    Article  CAS  Google Scholar 

  • Blindow, I., A. Hargeby & G. Andersson, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315–334.

    Article  Google Scholar 

  • Boschker, H. T. S. & J. J. Middelburg, 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology 40: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Bowszys, M., B. Jaworska, M. Kruk & A. Goździejewska, 2020. Zooplankton response to organic carbon content in a shallow lake covered by macrophytes. Chemistry and Ecology 36: 309–326.

    Article  Google Scholar 

  • Bracchini, L., A. Cózar, A. M. Dattilo, S. A. Loiselle, A. Tognazzi, N. Azza & C. Rossi, 2006. The role of wetlands in the chromophoric dissolved organic matter release and its relation to aquatic ecosystems optical properties. A case of study: Katonga and Bunjako Bays (Victoria Lake; Uganda). Chemosphere 63: 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  • Brendelberger, H., 1991. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnology and Oceanography 36: 884–894.

    Article  Google Scholar 

  • Brett, M. T., M. J. Kainz, S. J. Taipale & H. Seshan, 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proceedings of the National Academy of Sciences of the United States of America 106: 21197–21201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnology and Oceanography 25: 280–289.

    Article  Google Scholar 

  • Cazzanelli, M., L. Forsström, M. Rautio, A. Michelsen & K. S. Christoffersen, 2012. Benthic resources are the key to Daphnia middendorffiana survival in a high arctic pond. Freshwater Biology 57: 541–551.

    Article  CAS  Google Scholar 

  • Cole, J. J., M. L. Pace, S. R. Carpenter & J. F. Kitchell, 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45: 1718–1730.

    Article  Google Scholar 

  • Cole, J. J., S. R. Carpenter, J. Kitchell, M. L. Pace, C. T. Solomon & B. Weidel, 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the United States of America 108: 1975–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly, R. M., J. S. Hindell & D. Gorman, 2005. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Marine Ecology Progress Series 286: 69–79.

    Article  Google Scholar 

  • Cottenie, K. & L. De Meester, 2004. Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85: 114–119.

    Article  Google Scholar 

  • De Kluijver, A., J. Yu, M. Houtekamer, J. J. Middelburg & Z. Liu, 2012. Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu, China, measured by 13C labeling and fatty acid biomarkers. Limnology and Oceanography 57: 1245–1254.

    Article  Google Scholar 

  • De Kluijver, A., J. Ning, Z. Liu, E. Jeppesen, R. D. Gulati & J. J. Middelburg, 2015. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China. Limnology and Oceanography 60: 375–385.

    Article  Google Scholar 

  • De Melo, M. L., D. N. Kothawala, S. Bertilsson, J. H. Amaral, B. Forsberg & H. Sarmento, 2020. Linking dissolved organic matter composition and bacterioplankton communities in an Amazon floodplain system. Limnology and Oceanography 65: 63–76.

    Article  CAS  Google Scholar 

  • Demarty, M. & Y. T. Prairie, 2009. In situ dissolved organic carbon (DOC) release by submerged macrophyte–epiphyte communities in southern Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences 66: 1522–1531.

    Article  CAS  Google Scholar 

  • Drechsler, Z. & S. Beer, 1991. Utilization of inorganic carbon by Ulva lactuca. Plant Physiology 97: 1439–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunck, B., D. C. Amaral, U. L. Fernandes, N. F. Santana, T. M. Lopes & L. Rodrigues, 2018. Herbivory effects on the periphytic algal functional diversity in lake ecosystems: an experimental approach. Hydrobiologia 816: 231–241.

    Article  Google Scholar 

  • Faria, D. M., L. S. Cardoso & D. Motta Marques, 2017. Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces. Hydrobiologia 788: 267–280.

    Article  CAS  Google Scholar 

  • Findlay, S., L. Carlough, M. T. Crocker, H. K. Gill, J. L. Meyer & P. J. Smith, 1986. Bacterial growth on macrophyte leachate and fate of bacterial production. Limnology and Oceanography 31: 1335–1341.

    Article  CAS  Google Scholar 

  • Freese, H. M. & D. Martin-Creuzburg, 2013. Food quality of mixed bacteria–algae diets for Daphnia magna. Hydrobiologia 715: 63–76.

    Article  CAS  Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecology. Springer, New York: 1–308.

    Google Scholar 

  • Gao, J., Z. Liu & E. Jeppesen, 2014. Fish community assemblages changed but biomass remained similar after lake restoration by biomanipulation in a Chinese tropical eutrophic lake. Hydrobiologia 724: 127–140.

    Article  CAS  Google Scholar 

  • González Sagrario, M. A., D. Rodríguez Golpe, L. La Sala, G. Sánchez Vuichard, P. Minotti & H. O. Panarello, 2018. Lake size, macrophytes, and omnivory contribute to food web linkage in temperate shallow eutrophic lakes. Hydrobiologia 818: 87–103.

    Article  CAS  Google Scholar 

  • Hann, B. J. & L. Zrum, 1997. Littoral microcrustaceans (Cladocera, Copepods) in a prairie coastal wetland: seasonal abundance and community structure. Hydrobiologia 357: 37–52.

    Article  CAS  Google Scholar 

  • He, X. J. & W. X. Wang, 2006. Releases of ingested phytoplankton carbon by Daphnia magna. Freshwater Biology 51: 649–665.

    Article  CAS  Google Scholar 

  • Hill, W. R., J. Rinchard & S. Czesny, 2011. Light, nutrients and the fatty acid composition of stream periphyton. Freshwater Biology 56: 1825–1836.

    Article  CAS  Google Scholar 

  • Hu, E., H. He, Y. Su, E. Jeppesen & Z. Liu, 2016. Use of multi-carbon sources by zooplankton in an oligotrophic lake in the Tibetan Plateau. Water 8: 565.

    Article  CAS  Google Scholar 

  • Jaschinski, S., D. C. Brepohl & U. Sommer, 2008. Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses. Marine Ecology Progress Series 358: 103–114.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. Perrow, 1998. Impact of submerged macrophytes on fish–zooplankton interactions in lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds.), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 91–114.

    Chapter  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen, J. Theil-Nielsen & K. Jürgens, 2002. Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Archiv für Hydrobiologie 153: 533–555.

    Article  Google Scholar 

  • Jones, J. I. & S. Waldron, 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology 48: 1396–1407.

    Article  Google Scholar 

  • Kirchman, D. L., L. Mazzella, R. S. Alberte & R. Mitchell, 1984. Epiphytic bacterial production on Zostera marina. Marine Ecology Progress Series 15: 117–123.

    Article  Google Scholar 

  • McCutchan Jr., J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Mendonça, R., S. Kosten, G. Lacerot, N. Mazzeo, F. Roland, J. P. Ometto, E. A. Paz, C. P. Bove, N. C. Bueno, J. H. C. Gomes & M. Scheffer, 2013. Bimodality in stable isotope composition facilitates the tracing of carbon transfer from macrophytes to higher trophic levels. Hydrobiologia 710: 205–218.

    Article  CAS  Google Scholar 

  • Middelburg, J. J., C. Barranguet, H. T. Boschker, P. M. Herman, T. Moens & C. H. Heip, 2000. The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnology and Oceanography 45: 1224–1234.

    Article  CAS  Google Scholar 

  • Montiel-Martínez, A., J. Ciros-Pérez & G. Corkidi, 2015. Littoral zooplankton-water hyacinth interactions: habitat or refuge? Hydrobiologia 755: 173–182.

    Article  CAS  Google Scholar 

  • Morán, X. A. G., H. W. Ducklow & M. Erickson, 2013. Carbon fluxes through estuarine bacteria reflect coupling with phytoplankton. Marine Ecology Progress Series 489: 75–85.

    Article  CAS  Google Scholar 

  • Nõges, T., H. Luup & T. Feldmann, 2010. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquatic Ecology 44: 83–92.

    Article  CAS  Google Scholar 

  • Pace, M. L., K. G. Porter & Y. S. Feig, 1983. Species- and age-specific differences in bacterial resource utilization by two co-occurring cladocerans. Ecology 64: 1145–1156.

    Article  Google Scholar 

  • Pace, M. L., J. J. Cole, S. R. Carpenter, J. F. Kitchell, J. R. Hodgson, M. C. Van de Bogert, D. L. Bade, E. S. Kritzberg & D. Bastviken, 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427: 240–243.

    Article  CAS  PubMed  Google Scholar 

  • Parnell, A., 2016. simmr: A Stable Isotope Mixing Model. https://CRAN.R-project.org/package=simmr.

  • Penhale, P. A. & W. O. Smith, 1977. Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnology and Oceanography 22: 400–407.

    Article  CAS  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnology and Oceanography 23: 1039–1044.

    Article  Google Scholar 

  • Rautio, M. & W. F. Vincent, 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology 51: 1038–1052.

    Article  CAS  Google Scholar 

  • Reitsema, R. E., P. Meire & J. Schoelynck, 2018. The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes. Frontiers in Plant Science 9: 629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richoux, N. B., L. Bergamino, S. Moyo & T. Dalu, 2018. Spatial and temporal variability in the nutritional quality of basal resources along a temperate river/estuary continuum. Organic Geochemistry 116: 1–12.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Schoenberg, S. A. & A. E. Maccubbin, 1985. Relative feeding rates on free and particle-bound bacteria by freshwater macrozooplankton. Limnology and Oceanography 30: 1084–1090.

    Article  Google Scholar 

  • Siehoff, S., M. Hammers-Wirtz, T. Strauss & H. T. Ratte, 2009. Periphyton as alternative food source for the filter-feeding cladoceran Daphnia magna. Freshwater Biology 54: 15–23.

    Article  Google Scholar 

  • Søndergaard, M., 1983. Heterotrophic utilization and decomposition of extracellular carbon released by the aquatic angiosperm Littorella uniflora (L.) Aschers. Aquatic Botany 16: 59–73.

    Article  Google Scholar 

  • Taipale, S. J., E. Peltomaa, M. Hiltunen, R. I. Jones, M. W. Hahn, C. Biasi & M. T. Brett, 2015. Inferring phytoplankton, terrestrial plant and bacteria bulk δ13C values from compound specific analyses of lipids and fatty acids. PloS one 10:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taipale, S. J., A. W. E. Galloway, S. L. Aalto, K. K. Kahilainen, U. Strandberg & P. Kankaala, 2016. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency. Scientific Reports 6: 30897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Y., Y. Su, H. Sun, Z. Liu, H. J. Dumont, J. Hu, Y. Zhang & J. Yu, 2017. Carbon transfer from dissolved organic carbon to the cladoceran Bosmina: a mesocosm study. Knowledge and Management of Aquatic Ecosystems. https://doi.org/10.1051/kmae/2017016.

    Article  Google Scholar 

  • Tang, Y., X. Yang, R. Xu, X. Zhang, Z. Liu, Y. Zhang & H. J. Dumont, 2019. Heterotrophic microbes upgrade food value of a terrestrial carbon resource for Daphnia magna. Limnology and Oceanography 64: 474–482.

    Article  Google Scholar 

  • Torremorell, A., G. Pérez, L. Lagomarsino, P. Huber, C. Queimaliños, J. Bustingorry, P. Fermani, M. E. Llames & F. Unrein, 2015. Microbial pelagic metabolism and CDOM characterization in a phytoplankton-dominated versus a macrophyte-dominated shallow lake. Hydrobiologia 752: 203–221.

    Article  CAS  Google Scholar 

  • Van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Article  Google Scholar 

  • Vander Zanden, M. J., T. E. Essington & Y. Vadeboncoeur, 2005. Is pelagic top-down control in lakes augmented by benthic energy pathways? Canadian Journal of Fisheries and Aquatic Sciences 62: 1422–1431.

    Article  Google Scholar 

  • Vis, C., C. Hudon & R. Carignan, 2006. Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Canadian Journal of Fisheries and Aquatic Sciences 63: 1014–1026.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1983. Attached algal-substrata interactions: fact or myth, and when and how? In Wetzel, R. G. (ed.), Periphyton of Freshwater Ecosystems. Junk Publishers, The Hague, Dr W: 207–215.

    Chapter  Google Scholar 

  • Wetzel, R. G., 2005. Periphyton in the aquatic ecosystem and food webs. In Azim, M. E., M. C. J. Verdegem, A. A. van Dam & M. C. M. Beveridge (eds.), Periphyton Ecology Exploitation and Management. CABI, Oxfordshire.

    Google Scholar 

  • Zhang, Y., X. Liu, M. Wang & B. Qin, 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry 55: 26–37.

    Article  CAS  Google Scholar 

  • Zhang, X., Y. Tang, E. Jeppesen & Z. Liu, 2017. Biomanipulation-induced reduction of sediment phosphorus release in a tropical shallow lake. Hydrobiologia 794: 49–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Amy-Jane Beer for language editing, and we are grateful to Luigi Naselli-Flores and the reviewers for providing us with valuable comments and to other participants who collected and analyzed samples during the experimental period. We consider this work a joint contribution from the Department of Ecology and Institute of Hydrobiology, funded by Jinan University, China. This study was funded by the National Natural Science Foundation of China (32071566 and 41471086).

Funding

This study was funded by the National Natural Science Foundation of China (32071566 and 41471086).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ZL, YT and LS; methodology: YT, LS, ZJ and LX; writing—original draft preparation: LS; Writing—review and editing: YT, ZL, YS, LS, PZ and QL.

Corresponding author

Correspondence to Yali Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Jin, Z., Xie, L. et al. Carbon transfer from the submerged macrophyte Hydrilla verticillata to zooplankton: a 13C-labeled mesocosm study. Hydrobiologia 848, 4179–4188 (2021). https://doi.org/10.1007/s10750-021-04645-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04645-3

Keywords

Navigation