Skip to main content

Advertisement

Log in

Responses of submerged macrophytes and periphyton to warming under two nitrogen scenarios: A microcosm study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Warming and higher nitrogen loading induced by increasing precipitation are expected scenarios in north temperate regions as consequence of global climate change, with potential effects on the functional traits of submerged macrophytes and periphyton. Using an experimental heating facility we investigated the responses of three-week growth of two submerged macrophytes (Potamogeton crispus Linn. and Elodea canadensis Michx.), and periphyton on these plants and their artificial mimics. Analysis was based on IPCC climate scenarios A2 (ca. + 3°C) and A2 + 50% (called A3 in our study) relative to ambient conditions, across warming in spring and early summer (summer showed higher nitrogen loading). Some functional traits of plants showed species-specific responses to warming: A3 promoted the growth of E. canadensis in both seasons, while for P. crispus warming reduced the leaf number in spring but enhanced the turion production in early summer. Periphyton biomass was lower in A3 in early summer, but not in spring. Our results further show that the growth of E. canadensis and the asexual reproduction of P. crispus might increase in a warmer future. Moreover, we found a complex response of periphyton to the temperature increase and substrate type, varying with season and nutrient state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, A. P., J. F. Gillooly & J. H. Brown, 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19: 202–213.

    Article  Google Scholar 

  • Barker, T., K. Hatton, M. O’Connor, L. Connor & B. Moss, 2008. Effects of nitrate load on submerged plant biomass and species richness: results of a mesocosm experiment. Fundamental and Applied Limnology 173: 89–100.

    Article  CAS  Google Scholar 

  • Barko, J. W., D. G. Hardin & M. S. Matthews, 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Canadian Journal of Botany 60: 877–887.

    Article  Google Scholar 

  • Bécares, E., J. Gomá, M. Fernández-Aláez, C. Fernández-Aláez, S. Romo, M. R. Miracle, A. Ståhl-Delbanco, L. A. Hansson, M. Gyllström, W. J. Van De Bund, E. Van Donk, T. Kairesalo, J. Hietala, D. Stephen, D. Balayla & B. Moss, 2008. Effects of nutrients and fish on periphyton and plant biomass across a European latitudinal gradient. Aquatic Ecology 42: 561–574.

    Article  Google Scholar 

  • Bouraoui, F., B. Grizzetti, K. Granlund, S. Rekolainen & G. Bidoglio, 2004. Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Climatic Change 66: 109–126.

    Article  CAS  Google Scholar 

  • Cao, Y., W. Li & E. Jeppesen, 2014. The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails: a microcosm approach. Hydrobiologia 738: 49–59.

    Article  Google Scholar 

  • Cao, Y., É. M. Neif, W. Li, J. Coppens, N. Filiz, T. L. Lauridsen, T. A. Davidson, M. Søndergaard & E. Jeppesen, 2015. Heat wave effects on biomass and vegetative growth of macrophytes after long-term adaptation to different temperatures: a mesocosm study. Climate Research 66: 265–274.

    Article  Google Scholar 

  • Cao, Y., S. Olsen, M. F. Gutierrez, S. Brucet, T. A. Davidson, W. Li, T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2017. Temperature effects on periphyton, epiphyton and epipelon under a nitrogen pulse in low-nutrient experimental freshwater lakes. Hydrobiologia 795: 267–279.

    Article  CAS  Google Scholar 

  • Cao, Y., N. Zhang, J. Sun & W. Li, 2019. Responses of periphyton on non-plant substrates to different macrophytes under various nitrogen concentrations: a mesocosm study. Aquatic Botany 154: 53–59.

    Article  Google Scholar 

  • Casartelli, M. R. & C. Ferragut, 2018. The effects of habitat complexity on periphyton biomass accumulation and taxonomic structure during colonization. Hydrobiologia 807: 233–246.

    Article  Google Scholar 

  • Chen, X., X. Yang, X. Dong & E. Liu, 2013. Environmental changes in Chaohu Lake (southeast, China) since the mid 20th century: the interactive impacts of nutrients, hydrology and climate. Limnologica 43: 10–17.

    Article  Google Scholar 

  • Ebina, J., T. Tsutsui & T. Shirai, 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research 17: 1721–1726.

    Article  CAS  Google Scholar 

  • Feuchtmayr, H., D. McKee, I. F. Harvey, D. Atkinson & B. Moss, 2007. Response of macroinvertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks. Hydrobiologia 584: 425–432.

    Article  CAS  Google Scholar 

  • González Sagrario, M. A., E. Jeppesen, J. Gomà, M. Søndergaard, J. P. Jensen, T. Lauridsen & F. Landkildehus, 2005. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology 50: 27–41.

    Article  Google Scholar 

  • Gran, G., 1952. Determination of the equivalence point in potentiometric titrations. Part II. The Analyst 77: 661–670.

    Article  CAS  Google Scholar 

  • Guariento, R. D., A. Caliman, F. A. Esteves, R. L. Bozelli, A. Enrich-Prast & V. F. Farjalla, 2009. Substrate influence and temporal changes on periphytic biomass accrual and metabolism in a tropical humic lagoon. Limnologica 39: 209–218.

    Article  CAS  Google Scholar 

  • Hao, B., H. Wu, Y. Cao, W. Xing, E. Jeppesen & W. Li, 2017. Comparison of periphyton communities on natural and artificial macrophytes with contrasting morphological structures. Freshwater Biology 62: 1783–1793.

    Article  CAS  Google Scholar 

  • Hao, B., A. F. Roejkjaer, H. Wu, Y. Cao, E. Jeppesen & W. Li, 2018a. Responses of primary producers in shallow lakes to elevated temperature: a mesocosm experiment during the growing season of Potamogeton crispus. Aquatic Sciences 80: 34.

    Article  Google Scholar 

  • Hao, B., H. Wu, E. Jeppesen & W. Li, 2018b. The response of phytoplankton communities to experimentally elevated temperatures in the presence and absence of Potamogeton crispus. Algal Research 35: 539–546.

    Article  Google Scholar 

  • Hao, B., H. Wu, W. Zhen, H. Jo, Y. Cai, E. Jeppesen & W. Li, 2020. Warming effects on periphyton community and abundance in different seasons are influenced by nutrient state and plant type: a shallow lake mesocosm study. Frontiers in Plant Science 11: 404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Havens, K. E., T. L. East, A. J. Rodusky & B. Sharfstein, 1999. Littoral periphyton responses to nitrogen and phosphorus: an experimental study in a subtropical lake. Aquatic Botany 63: 267–290.

    Article  Google Scholar 

  • Herrman, K. S., V. Bouchard & R. H. Moore, 2008. Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA. Hydrobiologia 598: 304–314.

    Article  Google Scholar 

  • Hoekman, D., 2010. Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects. Ecology 91: 2819–2825.

    Article  PubMed  Google Scholar 

  • James, C., J. Fisher, V. Russell, S. Collings & B. Moss, 2005. Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater Biology 50: 1049–1063.

    Article  CAS  Google Scholar 

  • Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen, E., M. Meerhoff, K. Holmgren, I. González-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.

    Article  CAS  Google Scholar 

  • Jeppesen, E., B. Kronvang, J. E. Olesen, J. Audet, M. Søndergaard, C. C. Hoffmann, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, S. E. Larsen, M. Beklioglu, M. Meerhoff, A. Özen & K. Özkan, 2011. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663: 1–21.

    Article  CAS  Google Scholar 

  • Jespersen, A. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.

    Article  CAS  Google Scholar 

  • Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Article  Google Scholar 

  • Levi, P. S., T. Riis, A. B. Alnøe, M. Peipoch, K. Maetzke, C. Bruus & A. Baattrup-Pedersen, 2015. Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 18: 914–931.

    Article  CAS  Google Scholar 

  • Li, Z., L. He, H. Zhang, P. Urrutia-Cordero, M. K. Ekvall, J. Hollander & L. A. Hansson, 2017. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Global Change Biology 23: 108–116.

    Article  PubMed  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2009. Periphyton biomass, potential production and respiration in a shallow lake during winter and spring. Hydrobiologia 632: 201–210.

    Article  Google Scholar 

  • Liboriussen, L., F. Landkildehus, M. Meerhoff, M. E. Bramm, M. Søndergaard, K. Christoffersen, K. Richardson, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2005. Global warming: design of a flow-through shallow lake mesocosm climate experiment. Limnology and Oceanography: Methods 3: 1–9.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography. 12: 343–346.

    Article  CAS  Google Scholar 

  • McAskill, S. & J. Douglass, 2017. Salinity and temperature alter Pomacea maculata herbivory rates on Vallisneria americana. Journal of Molluscan Studies 83: 481–483.

    Article  Google Scholar 

  • Mckee, D., K. Hatton, J. W. Eaton, D. Atkinson, A. Atherton, I. Harvey & B. Moss, 2002. Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany 74: 71–83.

    Article  Google Scholar 

  • McKee, D., D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Oceanography 48: 707–722.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. T. de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González-Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioĝlu, S. Brucet, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.

    Article  Google Scholar 

  • Moss, B., D. Mckee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.

    Article  Google Scholar 

  • Moss, B., E. Jeppesen, M. Søndergaard, T. L. Lauridsen & Z. Liu, 2013. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia 710: 3–21.

    Article  CAS  Google Scholar 

  • Nakai, S., Y. Inoue, M. Hosomi & A. Murakami, 1999. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Water Science and Technology 38: 47–53.

    Article  Google Scholar 

  • O’Connor, M. I., M. F. Piehler, D. M. Leech, A. Anton & J. F. Bruno, 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biology 7: e1000178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen, S., F. Chan, W. Li, S. Zhao, M. Søndergaard & E. Jeppesen, 2015. Strong impact of nitrogen loading on submerged macrophytes and algae: a long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biology 60: 1525–1536.

    Article  CAS  Google Scholar 

  • Özkan, K., E. Jeppesen, L. S. Johansson & M. Beklioglu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55: 463–475.

    Article  Google Scholar 

  • Pakdel, F. M., L. Sim, J. Beardall & J. Davis, 2013. Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquatic Botany 110: 24–30.

    Article  Google Scholar 

  • Patrick, D. A., N. Boudreau, Z. Bozic, G. S. Carpenter, D. M. Langdon, S. R. LeMay, S. M. Martin, R. M. Mourse, S. L. Prince & K. M. Quinn, 2012. Effects of climate change on late-season growth and survival of native and non-native species of watermilfoil (Myriophyllum spp.): implications for invasive potential and ecosystem change. Aquatic Botany 103: 83–88.

    Article  Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Phillips, G., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135: 37–45.

    Article  Google Scholar 

  • Pinay, G., B. Gumiero, E. Tabacchi, O. Gimenez, A. M. Tabacchi-Planty, M. M. Hefting, T. P. Burt, V. A. Black, C. Nilsson, V. Iordache, F. Bureau, L. Vought, G. E. Petts & H. Décamps, 2007. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshwater Biology 52: 252–266.

    Article  CAS  Google Scholar 

  • Puche, E., S. Sánchez-Carrillo, M. Álvarez-Cobelas, A. Pukacz, M. A. Rodrigo & C. Rojo, 2018. Effects of overabundant nitrate and warmer temperatures on charophytes: the roles of plasticity and local adaptation. Aquatic Botany. 146: 15–22.

    Article  Google Scholar 

  • Qin, B., J. Zhou, J. J. Elser, W. S. Gardner, J. Deng & J. D. Brookes, 2020. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environmental Science and Technology 54: 3191–3198.

    Article  CAS  PubMed  Google Scholar 

  • Rasband, W., 2009. ImageJ, US National Institutes of Health. Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/.

  • Rooney, N. & J. Kalff, 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321–335.

    Article  Google Scholar 

  • Rühland, K. M., A. M. Paterson & J. P. Smol, 2015. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology 54: 1–35.

    Article  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Scharfenberger, U., E. Jeppesen, M. Beklioğlu, M. Søndergaard, D. G. Angeler, Aİ. Çakıroğlu, S. Drakare, J. Hejzlar, A. Mahdy, E. Papastergiadou, M. Šorf, K. Stefanidis, A. Tuvikene, P. Zingel & R. Adrian, 2019. Effects of trophic status, water level, and temperature on shallow lake metabolism and metabolic balance: a standardized pan-European mesocosm experiment. Limnology and Oceanography 64: 616–631.

    Article  CAS  Google Scholar 

  • Scheffer, M. & E. H. Van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  CAS  PubMed  Google Scholar 

  • Shurin, J. B., J. L. Clasen, H. S. Greig, P. Kratina & P. L. Thompson, 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences 1605: 3008–3017.

    Article  Google Scholar 

  • Silveira, M. J. & G. Thiébaut, 2017. Impact of climate warming on plant growth varied according to the season. Limnologica 65: 4–9.

    Article  Google Scholar 

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, C.E. Hanson, T. Barker, I. Bashmakov, L. Bernstein, J.Bogner, P. Bosch, R. Dave, O. Davidson, B. Fisher, M. Grubb, S. Gupta, K. Halsnaes, B. Heij, S.K. Ribeiro, S. Kobayashi, M. Levine & D. Martino, 2007. IPCC, 2007: summary for policymakers climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.

    Article  Google Scholar 

  • Søndergaard, M., T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795: 35–48.

    Article  Google Scholar 

  • Tarkowska-Kukuryk, M. & T. Mieczan, 2012. Effect of substrate on periphyton communities and relationships among food web components in shallow hypertrophic lake. Journal of Limnology 71: 279–290.

    Article  Google Scholar 

  • Vadeboncoeur, Y. & A. D. Steinman, 2002. Periphyton function in lake ecosystems. The Scientific World Journal 2: 1449–1468.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, J., T. Wang, J. García Molinos, C. Li, B. Hu, M. Pan & M. Zhang, 2020. Effects of warming, climate extremes and phosphorus enrichment on the growth, sexual reproduction and propagule carbon and nitrogen stoichiometry of Potamogeton crispus L. Environment International 137: 105502.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., R. Odgaard, B. Olesen, T. L. Lauridsen, L. Liboriussen, M. Søndergaard, Z. Liu & E. Jeppesen, 2015. Warming shows differential effects on late-season growth and competitive capacity of Elodea canadensis and Potamogeton crispus in shallow lakes. Inland Waters 5: 421–432.

    Article  Google Scholar 

  • Zhang, P., E. S. Bakker, M. Zhang & J. Xu, 2016. Effects of warming on Potamogeton crispus growth and tissue stoichiometry in the growing season. Aquatic Botany 128: 13–17.

    Article  Google Scholar 

  • Zhang, Y., E. Jeppesen, X. Liu, B. Qin, K. Shi, Y. Zhou, S. M. Thomaz & J. Deng, 2017. Global loss of aquatic vegetation in lakes. Earth-Science Reviews 173: 259–265.

    Article  CAS  Google Scholar 

  • Zhang, P., B. M. C. Grutters, C. H. A. van Leeuwen, J. Xu, A. Petruzzella, R. F. van den Berg & E. S. Bakker, 2019. Effects of rising temperature on the growth, stoichiometry, and palatability of aquatic plants. Frontiers in Plant Science 9: 1914.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anne Mette Poulsen for valuable editorial comments.

Funding

This study was supported by National Natural Science Foundation of China (31670368 and 31870345). E.J. was supported by the TÜBITAK BIDEB 2232 program (Project 118C250).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design: E.J., Y.C. and J.P.; research activities: Y.L., J.P., C.A., E.L. and Y.C.; writing—original draft preparation: Y.C. and Y.L.; writing—review and editing: E.J., H.H. and W.L.

Corresponding authors

Correspondence to Juan Pablo Pacheco or Yu Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: André Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Aznarez, C., Jeppesen, E. et al. Responses of submerged macrophytes and periphyton to warming under two nitrogen scenarios: A microcosm study. Hydrobiologia 848, 1333–1346 (2021). https://doi.org/10.1007/s10750-021-04530-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04530-z

Keywords

Navigation