Skip to main content
Log in

Effects of nutrients and fish on periphyton and plant biomass across a European latitudinal gradient

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Replicated, factorial mesocosm experiments were conducted across Europe to study the effects of nutrient enrichment and fish density on macrophytes and on periphyton chlorophyll a (chl-a) with regard to latitude. Periphyton chl-a densities and plant decline were significantly related to nutrient loading in all countries. Fish effects were significant in a few sites only, mostly because of their contribution to the nutrient pool. A saturation-response type curve in periphyton chl-a with nutrients was found, and northern lakes achieved higher densities than southern lakes. Nutrient concentration and phytoplankton chl-a necessary for a 50% plant reduction followed a latitudinal gradient. Total phosphorus values for 50% plant disappearance were similar from Sweden (0.27 mg L−1) to northern Spain (0.35 mg L−1), but with a sharp increase in southern Spain (0.9 mg L−1). Planktonic chl-a values for 50% plant reduction increased monotonically from Sweden (30 μg L−1) to València (150 μg L−1). Longer plant growing-season, higher light intensities and temperature, and strong water-level fluctuations characteristic of southern latitudes can lead to greater persistence of macrophyte biomass at higher turbidities and nutrient concentration than in northern lakes. Results support the evidence that latitudinal differences in the functioning of shallow lakes should be considered in lake management and conservation policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen HL, Ocevski BT (1981) Comparative primary productivity of algal epiphytes on three species of macrophytes in the littoral zone of Lake Ohrid, Yugoslavia. Holarctic Ecol 4:155–160

    Google Scholar 

  • Balls H, Moss B, Irvine K (1985) The effects of high nutrient loading on interactions between aquatic plants and phytoplankton. Verh inter Verein Theor Limnol 22:2912–2915

    Google Scholar 

  • Balls H, Moss B, Irvine K (1989) The loss of submerged plants with eutrophication I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwater Biol 22:71–87

    Article  Google Scholar 

  • Beklioglu M, Moss B (1996) Mesocosm experiments in the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biol 36:315–325

    Article  Google Scholar 

  • Björk-Ramberg S, Änell C (1985) Production and chlorophyll concentration of epipelic and epilithic algae in fertilized and nonfertilized subarctic lakes. Hydrobiologia 126:213–219

    Article  Google Scholar 

  • Blanco S. (2001) Experimental study on the effect of nutrient enrichment in the trophic ecology of fishes in a shallow lake. M.Sc. thesis, Department of Ecology, León University

  • Blanco S, Romo S, Villena MJ (2004) Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. Int Rev Hydrobiol 89:250–262

    Article  Google Scholar 

  • Blindow I (1987) The composition and density of epiphyton on several species of submerged macrophytes—the neutral substrate hypothesis tested. Aquat Bot 29:157–168

    Article  Google Scholar 

  • Blindow I (1988) Phosphorus toxicity in Chara. Aquat Bot 32:393–395

    Article  CAS  Google Scholar 

  • Bothwell ML (1988) Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment. Can J Fish Aquat Sci 45:261–270

    Google Scholar 

  • Burkholder JAM, Wetzel RG (1989) Epiphytic microalgae on natural substrata in a hardwater lake: seasonal dynamics of community structure biomass and ATP content. Arch Hydrobiol 83(Suppl.):1–56

    Google Scholar 

  • Brönmark C, Weisner SEB (1992) Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism. Hydrobiologia 243/244:293–301

    Article  Google Scholar 

  • Carpenter S, Lodge DM (1986) Effects of submerged macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Cattaneo A (1983) Grazing on epiphytes. Limnol Oceanogr 28:124–132

    Google Scholar 

  • Cattaneo A, Kalff J (1978) Seasonal changes in the epiphyte community of natural and artificial macrophytes in lake Memphremagog (Que. & Vt.). Hydrobiologia 60:135–144

    Article  Google Scholar 

  • Cataneo A, Kalff J (1979) Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol Oceanogr 24:1031–1037

    Google Scholar 

  • Cattaneo A, Kalff J (1980) The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophytes beds. Limnol Oceanogr 25:280–289

    Google Scholar 

  • Cattaneo A, Amierault MC (1992). How artificial are artificial substrata for periphyton? J North Am Benthol Soc 11:244–256

    Article  Google Scholar 

  • Cattaneo A, Galanti G, Romo S (1998) Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biol 39:725–740

    Article  Google Scholar 

  • Duarte CM, Kalff J, Peters RH (1986) Patterns in biomass and cover of aquatic macrophytes in lakes. Can J Fish Aquat Sci 43:129–165

    Article  Google Scholar 

  • Duarte CM, Kalff J (1987) Latitudinal influences on the depths of maximum colonization and maximum biomass of submerged angiosperms in lakes. Can J Fish Aquat Sci 44:1759–1764

    Article  Google Scholar 

  • Eminson D, Moss B (1980) The composition and ecology of periphyton communities in freshwaters. 1- The influence of host type and external environment on community composition. British Phycol J 15:429–446

    Article  Google Scholar 

  • Fernández-Alaez M, Fernández-Alaez C, Bécares E, Valentin M, Gomá J, Castrillo P (2004) A two-year experimental study on nutrient and predator influences on food webs constituents in a shallow lake of north west Spain. Freshwater Biol 49:1574–1592

    Article  CAS  Google Scholar 

  • Fontaine TD III , Nigh DG (1983) Characteristics of epiphyte communities on natural and artificial submersed litic plants: Substrate effects. Arch Hydrobiol 96:293–301

    Google Scholar 

  • Forsberg C (1964) Phosphorus, a maximum factor in the growth of Characeae. Nature 201:517–518

    Article  PubMed  CAS  Google Scholar 

  • Gasith A, Hoyer MV (1997) Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients. In: Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 381–392

    Google Scholar 

  • Gläntzer U, Haber W, Kohler A (1977) Experimentelle Untersuchungen zur Belstbarkeit submerser Fliessgewässer-Makrophyten. Arch Hydrobiol 79:193–232

    Google Scholar 

  • Goldsborough LG, Robinson GGC (1996) Patterns in wetlands. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal Ecology. Academic Press, San Diego, pp 77–117

    Chapter  Google Scholar 

  • Hansson LA (1988) Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes. Limnol Oceanogr 33:121–128

    CAS  Google Scholar 

  • Hansson LA (1990) Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwater Biol 24:265–273

    Article  Google Scholar 

  • Hansson LA (1992) Factors regulating periphytic algal biomass. Limnol. Oceanogr. 37:322–328

    CAS  Google Scholar 

  • Hansson LA, Gyllstrom M, Ståhl-Delbanco A, Svensson M (2004) Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biol 49:1538–1550

    Article  Google Scholar 

  • Henricsson M (1976) Nutritional studies of Chara globularis Thuill., Chara zeylanica Willd., and Chara haitensis Turpin. PhD Thesis, University of Uppsala, Sweden

  • Hietala J, Vakkilainen K, Kairesalo T (2004) Community resistance and change to nutrient enrichment and fish manipulation in a vegetated lake littoral. Freshwater Biol 49:1525–1537

    Article  CAS  Google Scholar 

  • Janes RA, Eaton JW, Hardwick K (1996) The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia 340:23–26

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Kristensen P, Sondergaard M, Mortensen E, Sortkjaer O, Olrik K (1990) Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201:219–227

    Article  Google Scholar 

  • Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K (eds) (1998) The Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag, New York

    Google Scholar 

  • Jones JI, Moss B, Eaton JW, Young JO (2000) Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biol 43:591–604

    Google Scholar 

  • Jupp BP, Spence DHN (1977) Limitations on macrophytes in a eutrophic lake, Loch Leven. J Ecol 65:175–186

    Article  Google Scholar 

  • Kairesalo T (1984) The seasonal succession of epiphytic communities within an Equisetum fluviatile stand in lake Pääjarvi Southern Finland. Int Rev Gesam Hydrobiol 69:475–505

    Article  Google Scholar 

  • Kirk JTO (1994) Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Lauridsen TL, Pedersen LJ, Jeppesen E, Sondergaard M (1996) The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J Plank Res 18:2293–2294

    Google Scholar 

  • McNair SA, Chow-Fraser P (2003) Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great Lakes coastal wetlands. Can J Fish Aquat Sci 60(6):676–689

    Article  CAS  Google Scholar 

  • Melzer A, Haber W, Kohler A (1977) Floristisch-ökologische Charakterisierung und Gliederum der Osterseen (Oberbayern) mit Hilfe von submersen Makrophyten. Mitt Flor-soz Arbeitsgem NF 19/20:139–151

    Google Scholar 

  • Middelborne AL, Markager AS (1997) Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biol 37:553–568

    Article  Google Scholar 

  • Morin A, Cattaneo A (1992) Factors affecting sampling variability of freshwater periphyton and the power of periphyton studies. Can J Fish Aquat Sci 49:1695–1703

    Article  Google Scholar 

  • Moss B (1976) The effects of fertilization and fish on community structure and biomass of aquatic macrophytes and epiphytic algal populations: an ecosystem experiment. J Ecol 64:313–342

    Article  Google Scholar 

  • Neundorfer JV, Kemp WM (1993) Nitrogen versus phosphorus enrichment of brackish waters: responses of the submerged plant Potamogeton perfoliatus and its associated algal community. Mar Ecol Prog Ser 94:71–82

    Article  CAS  Google Scholar 

  • Ozimek T, Van Donk E, Gulati RD (1993) Growth and nutrient uptake by two species of Elodea in experimental conditions and their role in nutrient accumulation. Hydrobiologia 251:13–18

    Article  CAS  Google Scholar 

  • Philips GL, Eminson D, Moss B (1978) A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat Bot 4:103–126

    Article  Google Scholar 

  • Romo S, Miracle MR, Villena MJ, Rueda J, Ferriol C, Vicente E (2004) Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biol 49:1593–1607

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Sondergaard M (1981) Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int Rev Hydrobiol 66:529–552

    Article  Google Scholar 

  • Sand-Jensen K, Borum J (1984) Epiphyte shading and its effect on photosynthesis and diel metabolism of Lobelia dortmanna L. during the spring bloom in a Danish lake. Aquat Bot 20:109–119

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Borum J (1991) Interactions among phytoplankton, periphyton and macrophytes in temperate freshwater and estuaries. Aquat Bot 41:137–175

    Article  Google Scholar 

  • Santamaría L, van Vierssen W (1997) Photosynthetic temperature responses of fresh- and brackish-water macrophytes: a review. Aquat Bot 58:135–170

    Article  Google Scholar 

  • Scheffer M (1998) The Ecology of Shallow Lakes. Chapman & Hall, New York

    Google Scholar 

  • Spence DHN. 1982. The zonation of plants in freshwater lakes. Adv Ecol Res 12:37–125

    Article  Google Scholar 

  • Stephen D, Balayla D, Bécares E, Colling SE, Fernández-Aláez C, Fernández-Aláez M, Ferriol C, García P, Goma J, Gyllström M, Hansson LA, Hietala J, Kairesalo T, Miracle MR, Romo S, Rueda J, Ståhl-Delbanco A, Svensson M, Vakkilainen K, Valentín M, Van de Bund WJ, Van Donk E, Vicente E, Villena MJ, Moss B (2004a) Continental-scale patterns of nutrients and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment. Freshwater Biol 49:1517–1524

    Article  CAS  Google Scholar 

  • Stephen D, Balayla D, Collings SE, Moss B (2004b) Two mesocosm experiments investigating the control of summer phytoplankton growth in a shallow lake. Freshwater Biol 49:1551–1564

    Article  CAS  Google Scholar 

  • Stevenson R, Singer R, Roberts D, Boylen C (1985) Patterns of epipelic algal abundance with depth, trophic status, and acidity in poorly buffered New Hampshire lakes. Can J Fish Aquat Sci 42:1501–1512

    Article  CAS  Google Scholar 

  • Timms RM, Moss B (1984) Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol Oceanogr 29:472–486

    Article  Google Scholar 

  • Van de Bund W, Van Donk E (2004) Effects of fish and nutrient additions on the food web stability in a charophyte-dominated lake Nardermeer. Freshwater Biol 49:1565–1573

    Article  CAS  Google Scholar 

  • Van de Bund W, Romo S, Villena NJ, Valentín M, Van Donk E, Vicente E, Vakkilainen K, Svensson M, Stephen D, Stahl-Delbanco A, Rueda J, Moss B, Miracle MR, Kairesalo T, Hansson LA, Hietala J, Gyllström M, Goma J, García P, Fernández-Aláez M, Fernández-Aláez C, Ferrriol C, Collings SE, Bécares E, Balayla DM, Alfonso T (2004) Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan-European mesocosm experiment. Freshwater Biol 49:1608–1618

    Article  CAS  Google Scholar 

  • Van der Berg MS, Scheffer M, Van Ness E, Coops H (1999) Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408/409:335–342

    Article  Google Scholar 

  • Weisner SEB, Strand A, Sandsten H (1997) Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes. Oecologia 109:592–599

    Article  Google Scholar 

  • Young OW (1945) A limnological investigation of periphyton in Douglas Lake, Michigan. Trans Am Microsc Soc 64:1–20

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a European Union contract, under Framework IV entitled “Shallow Wetland Lake function and restoration in a changing European climate (SWALE)” (Contract ENV4-CT97–0420). Thanks are also due to the referees, who contributed to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloy Bécares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bécares, E., Gomá, J., Fernández-Aláez, M. et al. Effects of nutrients and fish on periphyton and plant biomass across a European latitudinal gradient. Aquat Ecol 42, 561–574 (2008). https://doi.org/10.1007/s10452-007-9126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-007-9126-y

Keywords

Navigation