Skip to main content
Log in

Competition induces silver spoon effects in developing anuran larvae

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Early life conditions can have lifelong impacts on survival and fitness. Silver spoon effects occur when favorable early life conditions provide advantages through adulthood, even if conditions worsen. Alternatively, compensatory growth allows organisms initially reared in unfavorable conditions to grow more quickly than expected should conditions improve. We examined these possibilities in the American Toad, Anaxyrus americanus, by rearing larvae in low and high competition environments and then transferring them to either high- or low-resource levels. We measured growth one-week post-transfer and toadlet size after metamorphosis. We also dissected larvae and toadlets from each treatment to examine effects on organ size. Before transfer, larvae reared with low competition grew significantly faster than those reared with high competition. Consistent with the silver spoon hypothesis, these larvae ate significantly more food, continued to grow faster post-transfer, and metamorphosed into larger toadlets with smaller livers and larger guts than those initially reared with high competition, despite having the same food availability within a resource level. Overall, our study demonstrates that larvae initially reared in favorable conditions maintain a growth advantage through metamorphosis even if resource levels decline. Future studies should explore the effects of this advantage post-metamorphosis and into adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets generated and analyzed during this study are available in the Dryad repository https://doi.org/10.5061/dryad.pvmcvdngc.

References

  • Ab Ghani, N. I. & J. Merila, 2015. Population divergence in compensatory growth responses and their costs in sticklebacks. Ecology and Evolution 5: 7–23.

    Article  PubMed  Google Scholar 

  • Ali, M., A. Nicieza & R. J. Wootton, 2003. Compensatory growth in fishes: a response to growth depression. Fish and Fisheries 4: 147–190.

    Article  Google Scholar 

  • Bates, D. & M. Maechler, 2009. lme4: Linear mixed-effects models using S4 classes. R package version 1.1-21.

  • Beiswenger, R. E., 1975. Structure and function in aggregations of tadpoles of the American Toad, Bufo americanus. Herpetologica 31: 222–233.

    Google Scholar 

  • Boone, M. D., 2005. Juvenile frogs compensate for small metamorph size with terrestrial growth: overcoming the effects of larval density and insecticide exposure. Journal of Herpetology 39: 416–423.

    Article  Google Scholar 

  • Bouchard, S. S., C. J. O’Leary, L. J. Wargelin, W. B. Rodriguez, K. X. Jennings & K. M. Warkentin, 2015. Alternative competition-induced digestive strategies yield equal growth, but constrain compensatory growth in red-eyed treefrog larvae. Journal of Experimental Zoology 323: 778–788.

    Article  PubMed  Google Scholar 

  • Bouchard, S. S., C. J. O’Leary, L. J. Wargelin, J. F. Charbonnier & K. M. Warkentin, 2016. Post-metamorphic carry-over effects of larval digestive plasticity. Functional Ecology 30: 379–388.

    Article  Google Scholar 

  • Burton, T., S. S. Killen, J. D. Armstrong & N. B. Metcalfe, 2011. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B Biological Sciences 278: 3465–3473.

    Article  CAS  PubMed Central  Google Scholar 

  • Buston, P. M. & J. Elith, 2011. Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. Journal of Animal Ecology 80: 528–538.

    Article  Google Scholar 

  • Cabrera-Guzman, E., M. R. Crossland, G. P. Brown & R. Shine, 2013. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 8: e70121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capellan, E. & A. G. Nicieza, 2007. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. Journal of Animal Ecology 76: 1026–1035.

    Article  CAS  Google Scholar 

  • Chen, W., L. Zhang & X. Lu, 2011. Higher pre-hibernation energy storage in anurans from cold environments: a case study on a temperate frog Rana chensinensis along a broad latitudinal and altitudinal gradients. Annales Zoologici Fennici 48: 214–220.

    Article  Google Scholar 

  • Chin, E. H., A. L. Storm-Suke, R. J. Kelly & G. Burness, 2013. Catch-up growth in Japanese quail (Coturnix japonica): relationships with food intake, metabolic rate and sex. Journal of Comparative Physiology B 183: 821–831.

    Article  Google Scholar 

  • Cooper, E. B. & L. E. B. Kruuk, 2018. Ageing with a silver-spoon: a meta-analysis of the effect of developmental environment on senescence. Evolution Letters 2: 460–471.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespi, E. J. & R. W. Warne, 2013. Environmental conditions experienced during the tadpole stage alter post-metamorphic glucocorticoid response to stress in an amphibian. Integrative and Comparative Biology 53: 989–1001.

    Article  CAS  PubMed  Google Scholar 

  • Dash, M. D. & A. K. Hota, 1980. Density effects on the survival, growth rate, and metamorphosis of Rana tigrina tadpoles. Ecology 61: 1025–1028.

    Article  Google Scholar 

  • De Block, M., M. A. McPeek & R. Stoks, 2008. Stronger compensatory growth in a permanent-pond Lestes damselfly relative to temporary-pond Lestes. Oikos 117: 245–254.

    Article  Google Scholar 

  • Descamps, S., S. Boutin, D. Berteaux, A. G. McAdam & J. Gaillard, 2008. Cohort effects in red squirrels: the influence of density, food abundance and temperature on future survival and reproductive success. Journal of Animal Ecology 77: 305–314.

    Article  Google Scholar 

  • Distel, C. A. & M. D. Boone, 2010. Effects of aquatic exposure to the insecticide carbaryl are species-specific across life stages and mediated by heterospecific competitors in anurans. Functional Ecology 24: 1342–1352.

    Article  Google Scholar 

  • Dmitriew, C. & L. Rowe, 2011. The effects of larval nutrition on reproductive performance in a food-limited adult environment. PLoS ONE 6: e17399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douhard, M., M. Festa-Bianchet, J. Landes & F. Pelletier, 2019. Trophy hunting mediates sex-specific associations between early-life environmental conditions and adult mortality in bighorn sheep. Journal of Animal Ecology 88: 734–745.

    Article  Google Scholar 

  • Grafen, A., 1988. On the uses of data on lifetime reproductive success. In Clutton-Brock, T. (ed), Reproductive Success. University of Chicago Press, Chicago: 454–471.

    Google Scholar 

  • Gramapurohit, N. P., 2009. Catch-up growth during juvenile life can compensate for the small metamorphic size in Euphlyctis cyanophlyctis. Current Science 97: 1243–1246.

    Google Scholar 

  • Green, A. W. & L. L. Bailey, 2015. Reproductive strategy and carry-over effects for species with complex life histories. Population Ecology 57: 175–184.

    Article  Google Scholar 

  • Hales, C. N. & D. J. P. Barker, 1992. Type 2 non-insulin-dependent diabetes mellitus the thrifty phenotype hypothesis. Diabetologia 35: 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Hector, K. L. & S. Nakagawa, 2012. Quantitative analysis of compensatory and catch-up growth in diverse taxa. Journal of Animal Ecology 81: 583–593.

    Article  Google Scholar 

  • Hector, K. L., P. J. Bishop & S. Nakagawa, 2012. Consequences of compensatory growth in an amphibian. Journal of Zoology 286: 93–101.

    Article  Google Scholar 

  • Hopwood, P. E., A. J. Moore & N. J. Royle, 2014. Effects of resource variation during early life and adult social environment on contest outcomes in burying beetles: a context-dependent silver spoon strategy? Proceedings of the Royal Society B Biological Sciences 281: 20133102.

    Article  PubMed Central  Google Scholar 

  • Horiuchi, S. & Y. Koshida, 1989. Effects of foodstuffs on intestinal length in larvae of Rhacophorus arboreus (Anura: Rhacophoridae). Zoological Science 6: 321–328.

    Google Scholar 

  • Hu, F., E. J. Crespi & R. J. Denver, 2008. Programming neuroendocrine stress axis activity by exposure to glucocorticoids during postembryonic development of the frog, Xenopus laevis. Endocrinology 149: 5470–5481.

    Article  CAS  PubMed  Google Scholar 

  • Jasienski, M., 2008. The potential for recovery growth in stunted larvae of Rana sylvatica and its decline with developmental stages in R. temporaria. Amphibia-Reptilia 29: 399–404.

    Article  Google Scholar 

  • Kayes, S. M., R. L. Cramp & C. E. Franklin, 2009. Metabolic depression during aestivation in Cyclorana alboguttata. Comparative Biochemistry and Physiology A 154: 557–563.

    Article  Google Scholar 

  • Lindstrom, J., 1999. Early development and fitness in birds and mammals. Trends in Ecology and Evolution 14: 343–347.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, T. & R. Shine, 2000. Silver spoons and snake body sizes: prey availability early in life influences long-term growth rates of free-ranging pythons. Journal of Animal Ecology 69: 952–958.

    Article  Google Scholar 

  • Mangel, M. & S. B. Munch, 2005. A life-history perspective on short- and long-term consequences of compensatory growth. American Naturalist 166: E155–E176.

    Article  Google Scholar 

  • Martin, L. J., S. Rainford & B. Blossey, 2015. Effects of plant leaf litter diversity, species, origin and traits on larval toad performance. Oikos 124: 871–879.

    Article  Google Scholar 

  • McInerney, E. P., A. J. Silla & P. G. Byrne, 2016. The influence of carotenoid supplementation at different life-stages on the foraging performance of the Southern Corroboree frog (Pseudophryne corroboree): a test of the silver spoon and environmental matching hypotheses. Behavioural Processes 125: 26–33.

    Article  PubMed  Google Scholar 

  • Metcalfe, N. B. & P. Monaghan, 2001. Compensation for a bad start: grow now, pay later? Trends in Ecology and Evolution 16: 254–260.

    Article  PubMed  Google Scholar 

  • Minias, P., R. Wlodarczyk, A. Surmacki & T. Iciek, 2015. Silver spoon effects on plumage quality in a passerine bird. Royal Society Open Science 2: 140459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monaghan, P., 2008. Early growth conditions, phenotypic development and environmental change. Philosophical Transactions of the Royal Society B 363: 1635–1645.

    Article  Google Scholar 

  • Morey, S. & D. Reznick, 2001. Effects of larval density on postmetamorphic Spadefoot Toads (Spea hammondii). Ecology 82: 510–522.

    Article  Google Scholar 

  • Mueller, T., C. L. Kuell & C. Mueller, 2016. Effects of larval versus adult density conditions on reproduction and behavior of a leaf beetle. Behavioral Ecology and Sociobiology 70: 2081–2091.

    Article  Google Scholar 

  • Naya, D. E., C. Veloso, P. Sabat & F. Bozinovic, 2009. The effect of short- and long-term fasting on digestive and metabolic flexibility in the Andean toad, Bufo spinulosus. Journal of Experimental Biology 212: 2167–2175.

    Article  CAS  Google Scholar 

  • Neptune, T. C. & S. S. Bouchard, 2020. Predation and competition induce variable organ size trade-offs in larval anurans. Journal of Zoology 312: 193–204.

    Article  Google Scholar 

  • Nicieza, A. G. & D. Alvarez, 2009. Statistical analysis of structural compensatory growth: how can we reduce the rate of false detection? Oecologia 159: 27–39.

    Article  PubMed  Google Scholar 

  • Orizaola, G., E. Dahl & A. Laurila, 2014. Compensatory growth strategies are affected by the strength of environmental time constraints in anuran larvae. Oecologia 174: 131–137.

    Article  PubMed  Google Scholar 

  • Pigeon, G., M. Festa-Bianchet & F. Pelletier, 2017. Long-term fitness consequences of early environment in a long-lived ungulate. Proceedings of the Royal Society B 284: 20170222.

    Article  PubMed  Google Scholar 

  • Radder, R. S., D. A. Warner & R. Shine, 2007. Compensating for a bad start: catch-up growth in juvenile lizards (Amphibolurus muricatus, Agamidae). Journal of Experimental Zoology Part A 307A: 500–508.

    Article  Google Scholar 

  • Relyea, R. A. & J. R. Auld, 2004. Having the guts to compete: how intestinal plasticity explains costs of inducible defences. Ecology Letters 7: 869–875.

    Article  Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Roark, A. M., K. A. Bjorndal & A. B. Bolten, 2009. Compensatory responses to food restriction in juvenile green turtles (Chelonia mydas). Ecology 90: 2524–2534.

    Article  PubMed  Google Scholar 

  • Roberts, L. J., J. Taylor, P. J. Gough, D. W. Forman & C. G. de Leaniz, 2014. Silver spoons in the rough: can environmental enrichment improve survival of hatchery Atlantic salmon Salmo salar in the wild? Journal of Fish Biology 85: 1972–1991.

    Article  CAS  PubMed  Google Scholar 

  • Salles, O. C., P. Saenz-Agudelo, G. R. Almany, M. L. Berumen, S. R. Thorrold, G. P. Jones & S. Planes, 2016. Genetic tools link long-term demographic and life-history traits of anemonefish to their anemone hosts. Coral Reefs 35: 1127–1138.

    Article  Google Scholar 

  • Scharf, I., H. Braf, N. Ifrach, S. Rosenstein & A. Subach, 2015. The effects of temperature and diet during development, adulthood, and mating on reproduction in the red flour beetle. PLoS ONE 10: e0136924.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, D. E., 1994. The effect of larval density on adult demographic traits in Ambystoma opacum. Ecology 75: 1383–1396.

    Article  Google Scholar 

  • Scott, D. E., E. D. Casey, M. F. Donovan & T. K. Lynch, 2007. Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival. Oecologia 153: 521–532.

    Article  PubMed  Google Scholar 

  • Semlitsch, R. D., D. E. Scott & J. Pechmann, 1988. Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69: 184–192.

    Article  Google Scholar 

  • Sheridan, M. A. & Y. H. Kao, 1998. Regulation of metamorphosis-associated changes in the lipid metabolism of selected vertebrates. American Zoologist 38(3): 50–368.

    Google Scholar 

  • Smith, D. C., 1987. Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68: 344–350.

    Article  Google Scholar 

  • Song, Z., Y. Zou, C. Hu, Y. Ye, C. Wang, B. Qing, J. Komdeur & C. Ding, 2019. Silver spoon effects of hatching order in an asynchronous hatching bird. Behavioral Ecology 30: 509–517.

    Article  Google Scholar 

  • Stamper, C. E., D. J. Stevens, J. R. Downie & P. Monaghan, 2008. The effects of competition on pre- and post-metamorphic phenotypes in the common frog. Herpetological Journal 18: 187–195.

    Google Scholar 

  • Stamps, J. A., 2006. The silver spoon effect and habitat selection by natal dispersers. Ecology Letters 9: 1179–1185.

    Article  PubMed  Google Scholar 

  • Stoler, A. B. & R. A. Relyea, 2013. Leaf litter quality induces morphological and developmental changes in larval amphibians. Ecology 94: 1594–1603.

    Article  PubMed  Google Scholar 

  • Stoler, A. B., J. P. Stephens, R. A. Relyea, K. A. Berven & S. D. Tiegs, 2015. Leaf litter resource quality induces morphological changes in wood frog (Lithobates sylvaticus) metamorphs. Oecologia 179: 667–677.

    Article  PubMed  Google Scholar 

  • Taborsky, B., 2006. The influence of juvenile and adult environments on life-history trajectories. Proceedings of the Royal Society B 273: 741–750.

    Article  PubMed  Google Scholar 

  • Tarvin, R. D., C. S. Bermudez, V. S. Briggs & K. M. Warkentin, 2015. Carry-over effects of size at metamorphosis in Red-eyed Treefrogs: higher survival but slower growth of larger metamorphs. Biotropica 47: 218–226.

    Article  Google Scholar 

  • Tejedo, M., F. Marangoni, C. Pertoldi, A. Richter-Boix, A. Laurila, G. Orizaola, A. G. Nicieza, D. Alvarez & I. Gomez-Mestre, 2010. Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Climate Research 43: 31–U46.

    Article  Google Scholar 

  • Touchon, J. C., M. W. McCoy, J. R. Vonesh & K. M. Warkentin, 2013. Effects of plastic hatching timing carry over through metamorphosis in red-eyed treefrogs. Ecology 94: 850–860.

    Article  Google Scholar 

  • Van de Pol, M., L. W. Bruinzeel, D. Heg, H. P. Van der Jeugd & S. Verhulst, 2006. A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). Journal of Animal Ecology 75: 616–626.

    Article  Google Scholar 

  • Warkentin, K. M., 1992. Microhabitat use and feeding rate variation in green frog tadpoles (Rana clamitans). Copeia 1992: 731–740.

    Article  Google Scholar 

  • Wong, J. W. Y. & M. Koelliker, 2014. Effects of food restriction across stages of juvenile and early adult development on body weight, survival and adult life history. Journal of Evolutionary Biology 27: 2420–2430.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biology & Earth Science Department at Otterbein University for logistical support of this project. Erin Ulrich was particularly helpful in providing supplies and equipment, and Molly Kukawka, Justin McCurdy, Delaney Galbraith and Emma Kimberly assisted with the experimental set up and data collection. This work was conducted under Wild Animal Permit 17-125 from the Ohio Department of Natural Resources Division of Wildlife and with approval from the Otterbein University Animal Care and Use Committee. All applicable institutional and/or national guidelines for the care and use of animals were followed.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design, as well as the data collection and analysis. The first manuscript was written by SB, and SB commented on previous versions. Both authors participated in manuscript revisions and both approved the final manuscript.

Corresponding author

Correspondence to Sarah S. Bouchard.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the contents of this article.

Ethical approval

This work was conducted under Wild Animal Permit 17-125 from the Ohio Department of Natural Resources Division of Wildlife and with approval from the Otterbein University Animal Care and Use Committee. All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonifas, S.M., Bouchard, S.S. Competition induces silver spoon effects in developing anuran larvae. Hydrobiologia 848, 1219–1230 (2021). https://doi.org/10.1007/s10750-020-04492-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04492-8

Keywords

Navigation