Skip to main content
Log in

Combined effects of freshwater salinization and leaf traits on litter decomposition

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater salinization is a matter of major global concern due to its consequences on the aquatic biota and ecosystems functioning. Salt contamination negatively affects the leaf litter decomposition process, a key ecosystem-level process in forested streams that contributes to the recycling of nutrients and carbon storage. However, information on how additional factors may influence the magnitude of the response to salinization is scarce. In this microcosm study we assessed the importance of leaf (Castanea sativa; Quercus robur) traits, on aquatic hyphomycetes-mediated leaf litter decomposition and associated variables, in salt-contaminated (0, 1, 3 and 6 g/l NaCl) environments. The leaves were incubated individually, and in a mixture, for 28 days, under each tested salt concentration. Salinity depressed leaf mass loss, fungal biomass, respiration and sporulation rates, particularly at the highest salt concentration. Differences across leaf categories were observed in all parameters but fungal biomass, although the effects were not consistent across descriptors. All leaf categories responded with a similar intensity to salt contamination for all measured variables but sporulation rate. These results suggest that the deleterious influence of salt on litter decomposition occurs independently of the traits of the stream riparian subsidies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abelho, M., 2009. ATP and ergosterol as indicators of fungal biomass during leaf decomposition in streams: a comparative study. International Review of Hydrobiology 94: 3–15.

    CAS  Google Scholar 

  • Bärlocher, F., Y. K. Kebede, A. L. Gonçalves & C. Canhoto, 2013. Incubation temperature and substrate quality modulate sporulation by aquatic hyphomycetes. Microbial Ecology 66: 30–39.

    PubMed  Google Scholar 

  • Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romani & A. I. Packmann, 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14: 251.

    CAS  PubMed  Google Scholar 

  • Boulton, A. J., 1991. Eucalypt leaf decomposition in an intermittent stream in south-eastern Australia. Hydrobiologia 211: 123–136.

    Google Scholar 

  • Boyero, L., R. G. Pearson, C. Hui, M. O. Gessner, J. Pérez, M. A. Alexandrou, M. A. S. Graça, B. J. Cardinale, R. J. Albariño, M. Arunachalam, et al., 2016. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proceedings of the Royal Society B 283: 20152664.

    PubMed  Google Scholar 

  • Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer & C. J. Schulz, 2013. Salinisation of rivers: an urgent ecological issue. Environmental Pollution 173: 157–167.

    PubMed  Google Scholar 

  • Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, D. Buchwalter, J. Dunlop, O. Frör, J. Lazorchak, et al., 2016. Saving freshwater from salts. Science 351: 914–916.

    PubMed  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37: 163–172.

    CAS  PubMed  Google Scholar 

  • Canhoto, C., S. Simões, A. L. Gonçalves, L. Guilhermino & F. Bärlocher, 2017. Stream salinization and fungal-mediated leaf decomposition: a microcosm study. Science of the Total Environment 599: 1638–1645.

    PubMed  Google Scholar 

  • Casas, J. J., A. Larrañaga, M. Menéndez, J. Pozo, A. Basaguren, A. Martínez, J. Pérez, J. M. González, S. Mollá, C. Casado, E. Descals, N. Roblas, J. A. López-González & J. L. Valenzuela, 2013. Leaf litter decomposition of native and introduced tree species of contrasting quality in headwater streams: how does the regional setting matter? Science of the Total Environment 458–460: 197–208.

    PubMed  Google Scholar 

  • Cheever, B. M., E. B. Kratzer & J. R. Webster, 2012. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshwater Science 31: 133–147.

    Google Scholar 

  • Clay, N. A., S. P. Yanoviak & M. Kaspari, 2014. Short-term sodium inputs attract microbi-detritivores and their predators. Soil Biology and Biochemistry 75: 248–253.

    CAS  Google Scholar 

  • Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy, et al., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11: 1065–1071.

    PubMed  Google Scholar 

  • Dang, C. K., E. Chauvet & M. O. Gessner, 2005. Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecology Letters 8: 1129–1137.

    PubMed  Google Scholar 

  • Das, M., T. V. Royer & L. G. Leff, 2007. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology 73: 756–767.

    CAS  PubMed  Google Scholar 

  • Duarte, S., F. Cássio, C. Pascoal & F. Bärlocher, 2017. Taxa-area relationship of aquatic fungi on deciduous leaves. PLoS ONE 12: e0181545.

    PubMed  PubMed Central  Google Scholar 

  • Fernandes, I., C. Pascoal, H. Guimaraes, R. Pinto, I. Sousa & F. Cassio, 2012. Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshwater Biology 57: 2306–2317.

    Google Scholar 

  • Ferreira, V., E. Chauvet & C. Canhoto, 2014. Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences 72: 206–216.

    Google Scholar 

  • Gessner, M. O., 2003. Qualitative and quantitative analyses of aquatic hyphomycetes in streams. Fungal Diversity Research Series 10: 127–157.

    Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology 59: 502–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 2002. A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12: 498–510.

    Google Scholar 

  • Gómez, R., A. D. Asencio, J. M. Picón, R. Del Campo, M. I. Arce, M. del Mar Sánchez-Montoya, M. L. Suárez & M. R. Vidal-Abarca, 2016. The effect of water salinity on wood breakdown in semiarid Mediterranean streams. Science of the Total Environment 541: 491–501.

    PubMed  Google Scholar 

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land. BioScience 52: 905–916.

    Google Scholar 

  • Gonçalves, A. L., M. A. S. Graça & C. Canhoto, 2013. The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate. Fungal Ecology 6: 546–553.

    Google Scholar 

  • Gonçalves, A. L., M. A. S. Graça & C. Canhoto, 2015. Is diversity a buffer against environmental temperature fluctuations? A decomposition experiment with aquatic fungi. Fungal Ecology 17: 96–102.

    Google Scholar 

  • Gonçalves, A. L., A. Carvalho, F. Bärlocher & C. Canhoto, 2019a. Are fungal strains from salinized streams adapted to salt-rich conditions? Philosophical Transactions of the Royal Society B 374: 20180018.

    Google Scholar 

  • Gonçalves, A. L., S. Simões, F. Bärlocher & C. Canhoto, 2019b. Leaf litter microbial decomposition in salinized streams under intermittency. Science of The Total Environment 653: 1204–1212.

    PubMed  Google Scholar 

  • Graça, M. A. S., F. Bärlocher & M. Gessner, 2005. Methods to Study Litter Decomposition. Springer, Dordrecht.

    Google Scholar 

  • Handa, I. T., R. Aerts, F. Berendse, M. P. Berg, A. Bruder, O. Butenschoen, E. Chauvet, M. O. Gessner, J. Jabiol, M. Makkonen, B. G. McKie, B. Malmqvist, E. T. H. M. Peeters, S. Scheu, B. Schmid, J. van Ruijven, V. C. A. Vos & S. Hättenschwiler, 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509: 218–221.

    CAS  PubMed  Google Scholar 

  • Jackrel, S. L., T. C. Morton & J. T. Wootton, 2016. Intraspecific leaf chemistry drives locally accelerated ecosystem function in aquatic and terrestrial communities. Ecology 97: 2125–2135.

    PubMed  Google Scholar 

  • Kaushal, S. S., G. E. Likens, M. L. Pace, R. M. Utz, S. Haq, J. Gorman & M. Grese, 2018. Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Sciences 115: E574–E583.

    CAS  Google Scholar 

  • Kominoski, J. S., C. M. Pringle, B. A. Ball, M. A. Bradford, D. C. Coleman, D. B. Hall & M. D. Hunter, 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88: 1167–1176.

    CAS  PubMed  Google Scholar 

  • Lecerf, A., G. Marie, J. S. Kominoski, C. J. LeRoy, C. Bernadet & C. M. Swan, 2011. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92: 160–169.

    PubMed  Google Scholar 

  • Li, L. J., D. H. Zeng, Z. Y. Yu, Z. P. Fan, D. Yang & Y. X. Liu, 2011. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments 75: 787–792.

    Google Scholar 

  • López-Rojo, N., A. Martínez, J. Pérez, A. Basaguren, J. Pozo & L. Boyero, 2018. Leaf traits drive plant diversity effects on litter decomposition and fpom production in streams. PLoS ONE 13: e0198243.

    PubMed  PubMed Central  Google Scholar 

  • Martínez, A., J. Barros, A. L. Gonçalves & C. Canhoto, 2020. Salinisation effects on leaf litter decomposition in fresh waters: does the ionic composition of salt matter? Freshwater Biology. https://doi.org/10.1111/fwb.13514.

    Article  Google Scholar 

  • Molinero, J., J. Pozo & E. González, 1996. Litter breakdown in streams of the Agüera catchment: influence of dissolved nutrients and land use. Freshwater Biology 36: 745–756.

    Google Scholar 

  • Pérez, J., J. Galán, E. Descals & J. Pozo, 2014. Effects of fungal inocula and habitat conditions on alder and eucalyptus leaf litter decomposition in streams of northern Spain. Microbial Ecology 67: 245–255.

    PubMed  Google Scholar 

  • Pérez, J., A. Martínez, E. Descals & J. Pozo, 2018. Responses of aquatic hyphomycetes to temperature and nutrient availability: a cross-transplantation experiment. Microbial Ecology 76: 328–339.

    PubMed  Google Scholar 

  • R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reis, F., E. Nascimento, H. Castro, C. Canhoto, A. L. Gonçalves, S. Simões, P. García-Palacios, R. Milla, J. P. Sousa & P. M. da Silva, 2018. Land management impacts on the feeding preferences of the woodlouse Porcellio dilatatus (Isopoda: Oniscidea) via changes in plant litter quality. Applied Soil Ecology 132: 45–52.

    Google Scholar 

  • Sauer, F. G., M. Bundschuh, J. P. Zubrod, R. B. Schäfer, K. Thompson & B. J. Kefford, 2016. Effects of salinity on leaf breakdown: dryland salinity versus salinity from a coalmine. Aquatic Toxicology 177: 425–432.

    CAS  PubMed  Google Scholar 

  • Schäfer, R. B., M. Bundschuh, D. A. Rouch, E. Szöcs, P. C. von der Ohe, V. Pettigrove, R. Schulz, D. Nugegoda & B. J. Kefford, 2012. Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Science of the Total Environment 415: 69–78.

    PubMed  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Google Scholar 

  • Tyree, M., N. Clay, S. Polaskey & S. Entrekin, 2016. Salt in our streams: even small sodium additions can have negative effects on detritivores. Hydrobiologia 775: 109–122.

    CAS  Google Scholar 

  • Vineis, P., Q. Chan & A. Khan, 2011. Climate change impacts on water salinity and health. Journal of Epidemiology and Global Health 1: 5–10.

    PubMed  PubMed Central  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Google Scholar 

  • Wetterstedt, J, T. Persson & G. I. Ågren, 2010. Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Change Biology 16: 1806–1819.

    Google Scholar 

  • Yeakley, J. A., D. Ervin, H. Chang, E. Granek, V. Dujon, V. Shandas & D. Brown, 2016. Ecosystem Services of Streams and Rivers. River Science: Research and Management for the 21st Century. Wiley, Chichester: 335–352.

    Google Scholar 

  • Young, J. C., 1995. Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids. Journal of Agricultural and Food Chemistry 43: 2904–2910.

    CAS  Google Scholar 

  • Young, R. G., C. D. Matthaei & C. R. Townsend, 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society 27: 605–625.

    Google Scholar 

  • Zhang, M., X. Cheng, Q. Geng, Z. Shi, Y. Luo & X. Xu, 2019. Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography 28: 1469–1486.

    Google Scholar 

Download references

Acknowledgements

This work was financed by FCT/MEC through national funds and the co-funding by the FEDER, within the PT2020 Partnership Agreement, and COMPETE 2020, within the Project UID/BIA/04004/2013; project ReNATURE—Valorization of the Natural Endogenous Resources of the Centro Region (Centro 2020, Centro-01-0145- FEDER-000007) also support AM (fellowship reference ReNATURE – BPD11_2). ESAJ thanks the Instituto Federal do Maranhão, Campus Barreirinhas, for the postgraduation licence (SUAP 23249.034907.2017-11). The authors thank the efforts of the two anonymous reviewers and Chris Swan for improving the manuscript and proofreading the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aingeru Martínez.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida Júnior, E.S., Martínez, A., Gonçalves, A.L. et al. Combined effects of freshwater salinization and leaf traits on litter decomposition. Hydrobiologia 847, 3427–3435 (2020). https://doi.org/10.1007/s10750-020-04348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04348-1

Keywords

Navigation