Skip to main content
Log in

The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic

  • TRENDS IN AQUATIC ECOLOGY II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lakes in Greenland are species-poor ecosystems and many are fishless. We studied the structuring role of fish in lakes in high- and low-Arctic Greenland. Major differences were observed in the trophic structure of the 87 lakes studied. Pelagic zooplankton biomass was on average 3–4-fold higher in the fishless lakes and dominated by large-bodied taxa such as Daphnia, the phyllopod Branchinecta and the tadpole shrimp Lepidurus. In contrast, small-bodied crustaceans dominated the lakes with fish. Analysis of microcrustacean remains in the surface sediment and contemporary benthic invertebrates also showed a marked influence of fish on community structure and the size of the taxa present. The cascading effect of fish on the microbial communities was modest, and no differences were observed for chlorophyll a. The cascading effect of fish on invertebrates depended, however, on the species present, being largest between fishless lakes and lakes hosting only sticklebacks (Gasterosteus aculeatus), while lakes with both Arctic charr (Salvelinus arcticus) and stickleback revealed a more modest response, indicating that presence of charr modulates the predation effect of sticklebacks. It is predicted that more lakes in Greenland will be colonised by fish in a future warmer climate, and this will substantially alter these vulnerable ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, R. S., 1971. Crustacean plankton of 146 alpine and subalpine lakes and ponds in western Canada. Journal of the Fish Research Board Canada 28: 311–321.

    Article  Google Scholar 

  • Anderson, R. S., 1982. Zooplankton composition and change in an alpine lake. Verhandlungen der Internationalen Vereinigung der Limnologie 18: 264–268.

    Google Scholar 

  • Bennike, O., M. Sørensen, B. Fredskild, B. Holm Jacobsen, J. Böcher, S. L. Amsinck, E. Jeppesen, C. Andreasen, H. H. Christiansen & O. Humlum, 2008. Late quaternary environmental and cultural changes in the Wollaston Forland region, North East Greenland. Advances in Ecological Research 40, Elsevier, Oxford: 45–79.

  • Berg, S., E. Jeppesen, M. Søndergaard & E. Mortensen, 1994. Environmental effects of introducing whitefish Coregonus lavaretus (L.) in Lake Ring. Hydrobiologia 275(276): 71–79.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Illbrich-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Bradford, D. F., S. D. Cooper, T. M. Jenkins, K. Kratz, O. Sarnelle & A. D. Brown, 1998. Influences of natural acidity and introduced fish on faunal assemblages in California alpine lakes. Canadian Journal of Fishery and Aquatic Sciences 55: 2478–2491.

    Article  Google Scholar 

  • Brett, M. T. & C. R. Goldman, 1996. A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences of the United States of America 93: 7723–7726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlisle, D. M. & C. P. Hawkins, 1998. Relationships between invertebrate assemblage structure, 2 trout species, and habitat structure in Utah mountain lakes. Journal of the North American Benthological Society 17: 286–300.

    Article  Google Scholar 

  • Christiansen, J. & J. D. Reist, 2013. Fishes. In Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity, Akureyri, Iceland, Conservation of Arctic Flora and Fauna (CAFF).

  • Christoffersen, K. S., E. Jeppesen, D. L. Moorhead & L. J. Tranvik, 2008a. Food-web relationships and community structures in high-latitude lakes. In Vincent, W. F. & J. Laybourn-Parry (eds), Polar Lakes and Rivers. Oxford University Press, New York: 269–289.

    Chapter  Google Scholar 

  • Christoffersen, K. S., S. L. Amsinck, F. Landkildehus, T. L. Lauridsen & E. Jeppesen, 2008b. Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg. Advances in Ecological Research 40: 371–389.

    Article  Google Scholar 

  • Dahl-Hansen, G. A. P., 1995. Long-term changes in crustacean zooplankton – the effects of a mass removal of Arctic charr, Salvelinus alpinus (L.), from an oligotrophic lake. Journal of Plankton Research 17: 1819–1833.

    Article  Google Scholar 

  • Dahl-Hansen, G. A. P., S. H. Rubach & A. Klemetsen, 1994. Selective predation by pelagic Arctic charr on crustacean plankton in Takvatn, northern Norway, before and after mass removal of Arctic charr. Transactions of the American Fisheries Society 123: 385–394.

    Article  Google Scholar 

  • Davidson, T. A., T. L. Lauridsen, S. L. Amsinck, F. Landkildehus, K. S. Christoffersen, O. Bennike & E. Jeppesen, 2011. Inferring a single variable from assemblages with multiple control: getting into deep water with cladoceran lake-depth transfer functions. Hydrobiologia 676: 129–142.

    Article  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate on a selection of Cladocera, Copepoda and rotifers from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Eloranta, A. P., H. L. Mariash, M. Rautio & M. Power, 2013. Lipid-rich zooplankton subsidise the winter diet of benthivorous Arctic charr (Salvelinus alpinus) in a subarctic lake. Freshwater Biology 58: 2541–2554.

    Article  Google Scholar 

  • Frey, D. G., 1959. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Internationale Revue der Gesamten Hydrobiologie 44: 27–50.

    Article  Google Scholar 

  • Gliwicz, Z. M., A. Slusarczyk & M. Slusarczyk, 2001. Life-history synchronization in a long-lifespan single-cohort Daphnia population of an alpine lake free of fish. Oecologia 128: 368–378.

    Article  PubMed  Google Scholar 

  • Halvorsen, G. & N. Gullestad, 1976. Freshwater Crustacea in some areas of Svalbard. Archiv für Hydrobiologie 78: 383–395.

    Google Scholar 

  • Hammar, J., 1989. Freshwater ecosystems of polar regions: vulnerable resources. Ambio 1: 6–22.

    Google Scholar 

  • Haney, F. F. & C. Buchanan, 1987. Distribution and biogeography of Daphnia in the Arctic. In Peters, P. H. & R. de Bernard (eds), Daphnia. Memorie dell’Istituto italiano di idrobiologia 45: 77–105.

  • Hann, B. J., 1990. Cladocera. In Warner, B. G. (ed.), Methods in Quaternary Ecology. Geoscience Canada Reprint Series 5: 81–91.

  • Hobbie, J. E., 1984. Polar limnology. In Taub, E. B. (ed.), Ecosystems of the World 23 – Lakes and Reservoirs. Elsevier, Amsterdam.

    Google Scholar 

  • Hobson, K. A. & H. E. Welch, 1995. Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 52: 1195–1201.

    Article  Google Scholar 

  • Husmann, S., H. U. Jacobi, M. P. D. Meijering & B. Reise, 1978. Distribution and ecology of Svalbard Cladocera. Verhandlungen der internationalen Vereinigung der Limnologie 20: 2452–2456.

    Google Scholar 

  • Jakobsen, T. S., P. Borch Hansen, M. Søndergaard & E. Jeppesen, 2004. Cascading effect of three-spined stickleback (Gasterosteus aculeatus) on the community composition, size, biomass and diversity of phytoplankton in shallow, eutrophic brackish lagoons. Marine Ecology Progress Series 279: 305–309.

    Article  Google Scholar 

  • Jakobsen, T. S., P. B. Hansen, E. Jeppesen, P. Grønkjær & M. Søndergaard, 2003. Impact of three-spined stickleback Gasterosteus aculeatus on zooplankton and chl a in shallow, eutrophic, brackish lakes. Marine Ecology Progress Series 262: 277–284.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1997a. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.

    Article  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, S. F. Mitchell & C. W. Burns, 1997b. Do planktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand Journal of Freshwater Research 31: 163–173.

    Article  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen & C. W. Burns, 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. Journal of Plankton Research 22: 951–968.

    Article  Google Scholar 

  • Jeppesen, E., K. Christoffersen, H. Malmquist, B. Faafeng & L.-A. Hansson, 2002. Ecology of five Faroese Lakes: summary and synthesis. Annales Societatis Scientiarum Færoensis Supplementum 36: 126–139.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, P. Brettum, D. Hessen, M. Søndergaard, T. Lauridsen & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.

    Article  CAS  Google Scholar 

  • Jespersen, A.-M. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.

    CAS  Google Scholar 

  • Jürgens, K. & E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22: 1047–1070.

    Article  Google Scholar 

  • Jørgensen, L. & A. Klemetsen, 1995. Food resource partitioning of Arctic charr Salvelinus alpinus (L.) and the three-spined stickleback, Gasterosteus aculeatus L., in the littoral zone of Lake Takvatn in northern Norway. Ecology of Freshwater Fishes 4: 77–84.

    Article  Google Scholar 

  • Klemetsen, A., P.-A. Amundsen, P. E. Grotnes, R. Knudsen, R. Kristoffersen & M.-A. Svenning, 2002. Takvatn through 20 years: long-term effects of an experimental mass removal of Arctic charr, Salvelinus alpinus, from a subarctic lake. Environmental Biology of Fishes 64: 39–47.

    Article  Google Scholar 

  • Knapp, R. A., K. R. Matthews & O. Sarnelle, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological Monographs 71: 401–421.

    Article  Google Scholar 

  • Koroleff, F., 1970. Determination of total phosphorus in natural waters by means of the persulphate oxidation. An Interlab. report No 3, Cons. Int. pour l´explor de la Mer.

  • L’Abée-Lund, J. H., A. Langeland & H. Sægrov, 1992. Piscivory by Brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) in Norwegian lakes. Journal of Fish Biology 41: 91–101.

    Article  Google Scholar 

  • Langeland, A., 1982. Interactions between zooplankton and fish in a fertilized lake. Holarctic Ecology 5: 273–310.

    Google Scholar 

  • Leibold, M. A., 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134: 922–949.

    Article  Google Scholar 

  • Loeblich, A. R. & H. Tappan, 1988. Foraminiferal Genera and ter Braak C. J. F. & P Smilauer, 1998. Canoco reference manual their Classification. Van Nostrand Reinhold Company Inc., 869 and user’s guide to Canoco for Windows: Software for canonipp.

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.

    Article  Google Scholar 

  • Margaritora, F., 1985. Cladocera. Fauna D’Italia. Calderini, Bologna.

    Google Scholar 

  • Murphy, J. & J. R. Riley, 1972. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 21–26.

    Google Scholar 

  • Nilsson N.-A. & B. Pejler, 1973. On the Relation Between Fish Fauna and Zooplankton Composition in North Swedish Lakes. Report Institute of Freshwater Research Drottningholm 53: 51–77.

  • Nielsen, A. B., L. Hamerlik & K. S. Christoffersen, 2011. Three-spined sticklebacks (Gasterosteus aculeatus L.) recorded for the first time at Zackenberg – short description and comparative analysis with Arctic char food biology. In Jensen, L. M. & M. R. Rasch (eds), Zackenberg Ecological Research Operations, 16th Annual Report, 2010. Aarhus University, DCE – Danish Centre for Environment and Energy: 92–95.

  • O’Brien, W. J., 1975. Some aspects of the limnology of the ponds and lakes of the Noatak drainage basin, Alaska. Verhandlungen der Internationalen Vereinigung der Limnologie 19: 472–479.

    Google Scholar 

  • Pace, M., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology Evolution 14: 483–488.

    Article  CAS  PubMed  Google Scholar 

  • Paul, A. J., P. R. Leavitt, D. W. Schindler & A. K. Hardie, 1995. Direct and indirect effects of predation by a calanoid copepod (subgenus: Hesperodiaptomus) and of nutrients in a fishless alpine lake. Canadian Journal of Fisheries and Aquatic Sciences 52: 2628–2638.

    Article  Google Scholar 

  • Polis, G. A. & R. D. Holt, 1992. Intraguild predation: The dynamics of complex trophic interactions. Trends in Ecology & Evolution 7: 151–154.

    Article  CAS  Google Scholar 

  • Pont, D., A. J. Crivelli & F. Guillot, 1991. The impact of three-spined sticklebacks on the zooplankton of a previously fish-free pool. Freshwater Biology 26: 149–163.

    Article  Google Scholar 

  • Popadin, K., 2002. Body size of Holopedium gibberum under the influence of fish predation in small subarctic lakes. Verhandlungen der Internationalen Vereinigung der Limnologie 28: 204–209.

    Google Scholar 

  • Rautio, M. & W. F. Vincent, 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology 51: 1038–1052.

    Article  CAS  Google Scholar 

  • Rautio, M., F. Dufresne, I. Laurion, S. Bonilla, S. V. Warwick & K. S. Christoffersen, 2011a. Shallow freshwater ecosystems of the circumpolar Arctic. EcoScience 18: 204–222.

    Article  Google Scholar 

  • Rautio, M., H. L. Mariash & L. Forsström, 2011b. Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a Subarctic lake. Limnology and Oceanography 56: 1513–1524.

    Article  CAS  Google Scholar 

  • Riget, F., E. Jeppesen, F. Landkildehus, T. L. Lauridsen, P. Geertz-Hansen, K. Christoffersen & H. Sparholt, 2000. Landlocked Arctic charr (Salvelinus alpinus) population structure and morphometry in Greenland – is there a connection? Polar Biology 23: 550–558.

    Article  Google Scholar 

  • Rigler, F. H., 1978. Limnology in the High Arctic: a case study of Char Lake. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 127–140.

    Google Scholar 

  • Røen, U. I., 1995. Danmarks Fauna Bd. 85, Krebsdyr V, Gællefødder (Branchiopoda) og Karpelus (Branchiura). Dansk Naturhistorisk Forening, Viderup Bogtrykkeri A/S.

  • Sarnelle, O., 1992. Nutrient enrichment and grazer effects of phytoplankton in lakes. Ecology 73: 551–560.

    Article  Google Scholar 

  • Solórzano, L. & J. H. Sharp, 1980. Determination of total dissolved nitrogen in natural waters. Limnology and Oceanography 25: 751–754.

    Article  Google Scholar 

  • Stross, R. G., M. C. Miller & R. J. Daley, 1980. Zooplankton: communities, life cycles and production. In Hobbie, J. E. (ed.), Limnology of Tundra Ponds. US/IBP Synthesis Series 13. Dowden, Hutchinson and Ross Inc., Strousburg: 251–296.

  • Svenning, M.-A., M. Aas & R. Borgstrøm, 2015. First records of three-spined stickleback Gasterosteus aculeatus in Svalbard freshwaters: An effect of climate change? Polar Biology. doi:10.1007/s00300-015-1752-6.

    Google Scholar 

  • Sægrov, H., A. Hobæk & H. H. Lábe-Lund, 1996. Vulnerability of melanic Daphnia to brown trout predation. Journal of Plankton Research 18: 2113–2118.

    Article  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Schierup, K. Christoffersen & D. Lodge, 2003. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways. Limnology & Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Wiederholm, T., 1980. Use of benthos in lake monitoring. Journal of the Water Pollution Control Federation 52: 537–547.

    CAS  Google Scholar 

  • Williams, D. D. & J. C. Delbeek, 1989. Biology of the three-spined stickleback, Gasterosteus aculeatus, and the blackspotted stickleback, Gasterosteus wheatlandi, during their marine pelagic phase in the Bay of Fundy, Canada. Environmental Biology of Fishes 24: 33–41.

    Article  Google Scholar 

  • Wotton, R. J., 1984. A Functional Biology of Sticklebacks. Croom Helm, London.

    Book  Google Scholar 

  • Wrona, F. J., T. D. Prowse, J. D. Reist, R. Beamish, J. J. Gibson, J. Hobbie, E. Jeppesen, J. King, G. Koeck, A. Korhola, L. Levêsque, R. Macdonald, M. Power, V. Skvortsov, W. Vincent, R. Clark, B. Dempson, D. Lean, H. Lehtonen, S. Perin, R. Pienitz, M. Rautio, J. Smol, R. Tallman & A. Zhulidov, 2005. Freshwater ecosystems and fisheries. ACIA : Arctic Climate Impact Assessment. Cambridge University Press, New York: 354–452.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Henrik Skovgaard, Rie Stoor and Iben Hansen for assistance in the field. We thank Anne Mette Poulsen, Kathe Møgelvang and Tinna Christensen for manuscript assistance and layout and the technical staff at Aarhus University and University of Copenhagen for valuable support. We wish to thank the Danish Polar Centre for valuable logistic support during our stay at Zackenberg. The work was supported by the “Global Climate Change Programme” (No. 9700195), the Commission for Scientific Research in Greenland, The North Atlantic Research Programme 1998–2000, the Arctic Programme, 1998–2002, the Nordic Council of Ministers and the Danish National Science Research Council (Research Project “Consequences of weather and climate changes for marine and freshwater ecosystems. Conceptual and operational forecasting of the aquatic environment”), the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu) and CRES, and during the writing phase by the The North Water Project (NOW) funded by the Velux Foundations and the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Jeppesen.

Additional information

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology II

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeppesen, E., Lauridsen, T.L., Christoffersen, K.S. et al. The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic. Hydrobiologia 800, 99–113 (2017). https://doi.org/10.1007/s10750-017-3279-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3279-z

Keywords

Navigation