Skip to main content
Log in

Phosphatase activities in sediments of subtropical lakes with different trophic states

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We characterized the vertical distribution of extracellular phosphatase enzymes; phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) activities in sediments of three subtropical lakes were characterized by different trophic states. We then explored relationships between phosphatase activities, phosphorus (P) compounds, and microbial biomass and activity. Sediment P compounds had been characterized previously by two different methods: sequential fractionation and solution 31P NMR spectroscopy. PMEase and PDEase activities declined with depth and were correlated strongly with microbial biomass and anaerobic respiration, indicating that bacterial phosphatase dominated in these sediments and is an important step in the anaerobic breakdown of organic matter. The oligo-mesotrophic lake had higher PMEase activity and the hypereutrophic lake had higher PDEase activity, while the eutrophic lake had the lowest activities of both enzymes. Principal component analyses showed that enzyme activities were related closely to concentrations of the P forms that they degrade: PMEase activity was correlated with phosphomonoesters, while PDEase activity was correlated with phosphodiesters (including nucleic acids and phospholipids). Enzyme activities were not related to the trophic state but with the concentration P forms found in the sediment. Overall, these results provide insight into the phosphorus cycle in subtropical lake sediments by demonstrating a link between phosphatase activity, P composition, and microbial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anupama, V. N., P. N. Amrutha, G. S. Chitra & B. Krishnakumar, 2008. Phosphatase activity in anaerobic bioreactors for wastewater treatment. Water Research 42: 2796–2802.

    Article  CAS  PubMed  Google Scholar 

  • Aaronson, S. & N. J. Patni, 1976. The role of surface and extracellular phosphatases in the phosphorus requirement of Ochromonas. Limnology and Oceanography 21: 838–845.

    Article  CAS  Google Scholar 

  • Alef, K., P. Nannipieri & T. Cepeda, 1995. Phosphatase Activity. In Alef, K. & P. Nannipieri (eds), Methods in Applied Soil Microbiology and Biochemistry. Academic Press, New York: 335–344.

    Google Scholar 

  • Barik, S. K., C. S. Purushothaman & A. N. Mohanty, 2001. Phosphatase activity with reference to bacteria and phosphorus in tropical freshwater aquaculture pond systems. Aquaculture Research 32: 819–832.

    Article  CAS  Google Scholar 

  • Battoe, L. E., 1985. Changes in vertical phytoplankton distribution in response to natural disturbance in a temperate and subtropical lake. Journal of Freshwater Ecology 3: 167–174.

    Article  CAS  Google Scholar 

  • Boon, P. I. & B. K. Sorrell, 1991. Biogeochemistry of billabong sediments. I. The effect of macrophytes. Freshwater Biology 26: 209–226.

    Article  CAS  Google Scholar 

  • Burns, R. G., 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biology and Biochemistry 14: 423–427.

    Article  CAS  Google Scholar 

  • Celi, L., S. Lamacchia, F. A. Marsan & E. Barberis, 1999. Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena. Soil Science 164: 574–585.

    Article  CAS  Google Scholar 

  • Chrost, R. J. & W. Siuda, 2002. Ecology of microbial enzymes in lake ecosystems. In Burns, R. G. & R. P. Dick (eds), Enzymes in the Environment: Activity, Ecology and Applications. Marcel Dekker Inc, New York: 35–72.

    Google Scholar 

  • Clugston, J. P., 1963. Lake Apopka, Florida, A changing lake and its vegetation. Quarterly Journal of the Florida Academy of Sciences 26: 168–174.

    Google Scholar 

  • Davelaar, D., 1993. Ecological significance of bacterial polyphosphate metabolism in sediments. Hydrobiologia 253: 179–192.

    Article  CAS  Google Scholar 

  • Davis, S. H. & R. Goulder, 1993. Deterioration in bacteriological quality of water through fish farms. The Journal of Applied Bacteriology 74: 336–339.

    Article  Google Scholar 

  • Elser, J. J. & B. L. Kimmel, 1986. Alteration of phytoplankton phosphorus status during enrichment experiments: implications for interpreting nutrient enrichment bioassay results. Hydrobiologia 133: 217–222.

    Article  CAS  Google Scholar 

  • Engstrom, D. R., S. P. Schottler, P. R. Leavitt & K. E. Havens, 2006. A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecological Applications 16: 1194–1206.

    Article  PubMed  Google Scholar 

  • EPA, 1993. Methods for the Determination of Inorganic Substances in Environmental Samples. Environmental Monitoring Systems Lab, Cincinnati.

    Google Scholar 

  • Fisher, M. M., M. Brenner & K. R. Reddy, 1992. A simple inexpensive, piston corer for collecting undisturbed sediment/water interface profiles. Journal of Paleolimnology 7: 157–161.

    Article  Google Scholar 

  • Fisher, M. M., K. R. Reddy & R. T. James, 2001. Long-term changes in the sediment chemistry of a large shallow subtropical lake. Journal of Lake and Reservoir Management 17: 217–232.

    Article  CAS  Google Scholar 

  • Gächter, R. & J. S. Meyer, 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103–121.

    Article  Google Scholar 

  • Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnology and Oceanography 33: 1542–1558.

    Google Scholar 

  • Hedley, M. J. & J. W. B. Stewart, 1982. Method to measure microbial phosphate in soil. Soil Biology and Biochemistry 14: 377–385.

    Article  CAS  Google Scholar 

  • Hino, S., 1989. Characterization of orthophosphate release from dissolved organic phosphorus by gel filtration and several hydrolytic enzymes. Hydrobiologia 174: 49–55.

    Article  CAS  Google Scholar 

  • Jasson, M., 1981. Induction of high phosphatase activity by aluminum in acid lakes. Archiv für Hydrobiologia 93: 32–44.

    Google Scholar 

  • Jasson, M., H. Olsson & O. Broberg, 1981. Characterization of acid phosphatases in the acidified Lake Gårdsjön. Sweden. Archiv für Hydrobiologie. 92: 377–395.

    Google Scholar 

  • Jasson, M., H. Olsson & K. Pettersson, 1988. Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170: 157–175.

    Article  Google Scholar 

  • Jin, C. J., S. R. Wang, H. C. Zhao, Q. Y. Bu, J. Z. Chu, Z. Cui, X. N. Zhou & F. C. Wu, 2006. Effect of lake sediments of different trophic states on alkaline phosphatase activity. Journal of Lake and Reservoir Management 11: 169–176.

    Article  CAS  Google Scholar 

  • Kobori, H. & N. Taga, 1979. Phosphatase activity and its role in mineralization of organic phosphorus in coastal sea water. Journal of Experimental Marine Biology and Ecology 36: 23–39.

    Article  CAS  Google Scholar 

  • Kuenzler, E. J., 1965. Glucose-6-phosphate utilization by marine algae. Journal Phycology 1: 156–164.

    Article  Google Scholar 

  • Layne, J. N., 1979. Natural Features of the Lake Annie tract, Highlands County. Florida, Archbold Biological Station.

    Google Scholar 

  • Makarov, M. I., L. Haumaierb & W. Zechb, 2002. Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biology and Biochemistry 34: 1467–1477.

    Article  CAS  Google Scholar 

  • Massik, Z. & M. J. Cotello, 1995. Bioavailability of phosphorus in fish farm effluents to freshwater phytoplankton. Aquaculture Research 26: 607–616.

    Article  Google Scholar 

  • Megonigal, J. P., M. E. Hines & P. T. Visscher, 2004. Anaerobic Metabolism linkages to trace gases and aerobic processes. In Schlesinger, W. H. (ed.), Biogeochemistry. Elsevier- Pergamon, Oxford: 317–424.

    Google Scholar 

  • Newman, S. & K. R. Reddy, 1993. Alkaline phosphatase activity in the sediment-water column of a hypereutrophic lake. Journal of Environmental Quality 22: 832–838.

    Article  CAS  Google Scholar 

  • Pant, H. K. & P. R. Warman, 2000. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biology and Fertility of Soils 30: 306–311.

    Article  CAS  Google Scholar 

  • Reddy, K. R. & D. A.Graetz, 1991. Internal nutrient budget for lake Apopka. Special Publ. SJ91-SP6. St Johns River Water Mgt District. Palatka, FL, USA.

  • Rejmankova, E. & D. Sirova, 2007. Wetland macrophyte decomposition under different nutrient conditions: relationships between decomposition rate, enzyme activities and microbial biomass. Soil Biology and Biochemistry 39: 526–538.

    Article  CAS  Google Scholar 

  • Schelske, C. L., M. F. Coveney, F. J. Aldridge, W. Kenney & J. E. Cable, 2000. Wind or nutrients: historical development of hypereutrophy in Lake Apopka, Florida, USA. Archiv für Hydrobiologie Special Issues in Advanced Limnology 55: 543–563.

    CAS  Google Scholar 

  • Sinke, A. J., A. A. Cornelese & T. E. Cappenberg, 1991. Phosphatase activity in sediments of the Loosdrecht lakes. Verhandlundgen der Internationale Vereinigung Limnologie 24: 719–721.

    CAS  Google Scholar 

  • Siuda, W., 1984. Phosphatases and their role in organic phosphorus transformation in natural waters. A review. Polskie Archiwum Hydrobiologii 31: 207–233.

    CAS  Google Scholar 

  • Siuda, W. & R. J. Chrost, 2001. Utilization of selected dissolved organic phosphorus compounds by bacteria in lake water under non-limiting orthophosphate conditions. Polish Journal of Environmental Studies 10: 475–483.

    CAS  Google Scholar 

  • Tabatai, M. A., 1994. Soil Enzymes. In Weaver, R. W. (ed.), Methods of soil analysis: Microbiological & biochemical properties, Part 2. Soil Science Society of America, Madison: 903–931.

    Google Scholar 

  • Thompson, D. M., 1981. Distribution of heavy metals in selected Florida lake sediments. Master dissertation, University of Florida, Gainesville, FL, USA.

  • Torres, I. C., B. L. Turner & K. R. Reddy, 2014. The chemical nature of phosphorus in subtropical lake sediments. Aquatic Geochemistry. doi:10.1007/s10498-014-9228-9.

    Google Scholar 

  • Turner, B. L. & P. M. Haygarth, 2005. Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment 34: 27–36.

    Article  Google Scholar 

  • Vance, E. D., P. C. Brookes & D. S. Jenkinson, 1987. An extraction method for measuring microbial biomass C. Soil Biology and Biochemistry 19: 703–707.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1991. Extracellular enzymatic interactions; storage, redistribution, and interspecific communication. In Chrost, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer, New York: 6–28.

    Chapter  Google Scholar 

  • Wetzel, R. G., 1999. Organic phosphorus mineralization in soils and sediments. In Reddy, K. R., G. A. O’Connor & C. L. Schelske (eds), Phosphorus Biogeochemistry of Subtropical Ecosystems. Lewis, Boca Raton: 225–241.

    Google Scholar 

  • Wobus, A., C. Bleul, S. Maassen, C. Scheerer, M. Schuppler, E. Jacobs & I. Röske, 2003. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbial Ecology 46: 331–347.

    Article  CAS  Google Scholar 

  • Wright, A. L. & K. R. Reddy, 2001. Heterotrophic microbial activity in northern Everglades wetland soils. Soil Science Society American Journal 65: 1856–1864.

    Article  CAS  Google Scholar 

  • Yiyong, Z., L. Jianqi & Z. Min, 2001. Vertical variations in kinetics of alkaline phosphatase and P species in sediments of a shallow Chinese eutrophic lake (Lake Donghu). Hydrobiologia 450: 91–98.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the following research staff of the UF Wetland Biogeochemistry Laboratory for their assistance in this work: Matt Fisher, Jason Smith, Andrea Albertin, and Kathleen McKee for field and sampling assistance: and Yu Wang and Jeremy Bright for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramesh Reddy.

Additional information

Handling editor: Zhengwen Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, I.C., Turner, B.L. & Reddy, K.R. Phosphatase activities in sediments of subtropical lakes with different trophic states. Hydrobiologia 788, 305–318 (2017). https://doi.org/10.1007/s10750-016-3009-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3009-y

Keywords

Navigation