Skip to main content

Advertisement

Log in

Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Headwater streams export organisms and other materials to receiving streams, and macroinvertebrate drift can shape colonization dynamics in downstream reaches while providing food for downstream consumers. Spring-time drift and organic matter export was measured once monthly (February–May) over a 24-h period near the outlets of 12 eastern Kentucky (USA) streams to document and explore factors governing downstream transport. We compared drift measures as loads (day−1) and concentrations (volume−1) including drift density, biomass, richness, composition, and particulate organic matter across catchment area, month, reach scale factors, and network proximity. Aquatic invertebrate drift densities were roughly 10 times greater than terrestrial invertebrate densities; aquatic richness ranged from 18 to 45 taxa with Ephemeroptera, Plecoptera, Trichoptera, and Diptera genera dominating drift sample richness and abundance. Ordination revealed that assemblages clustered by month and catchment area; organic matter exports (loads or concentrations) also varied by month and catchment area factors. While drift measures were correlated with catchment area and sample date, local factors (e.g., substrate composition, riffle length, channel slope, and network proximity) were generally non-influential. The findings can be used to inform preservation and restoration strategies where headwater streams serve as sources of colonizers and provide food subsidies to receiving streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altermatt, F., 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology 47: 365–377.

    Article  Google Scholar 

  • Anderson, N. H. & D. M. Lehmkuhl, 1968. Catastrophic drift of insects in a woodland stream. Ecology 49: 198–206.

    Article  Google Scholar 

  • Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen & N. G. Swenson, 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.

    Article  PubMed  Google Scholar 

  • Benda, L., N. L. Poff, D. Miller, T. Dunne, G. Reeves, G. Pess & M. Pollock, 2004. The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54: 413–427.

    Article  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bernhardt, E. S., B. D. Lutz, R. S. King, J. P. Fay, C. E. Carter, A. M. Helton & J. Amos, 2012. How many mountains can we mine? Assessing the regional degradation of Central Appalachian rivers by surface coal mining. Environmental Science and Technology 46: 8115–8122.

    Article  CAS  PubMed  Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift – a review. Hydrobiologia 166: 77–93.

    Article  Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Campbell Grant, E. H., 2011. Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks. Journal of the North American Benthological Society 30: 252–258.

    Article  Google Scholar 

  • Cañedo-Argüelles, M., K. S. Boersma, M. T. Bogan, J. D. Olden, I. Phillipsen, T. A. Schriever & D. A. Lytle, 2015. Dispersal strength determines meta-community structure in a dendritic riverine network. Journal of Biogeography 42: 778–790.

    Article  Google Scholar 

  • Cormier, S. M., G. W. Suter & L. Zheng, 2013. Derivation of a benchmark for freshwater ionic strength. Environmental Toxicology and Chemistry 32: 263–271.

    Article  CAS  PubMed  Google Scholar 

  • Corti, R. & T. Datry, 2012. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshwater Science 31: 1187–1201.

    Article  Google Scholar 

  • Elliott, J. M., 1970. Diel changes in invertebrate drift and the food of trout Salmo trutta L. Journal of Fish Biology 2: 161–165.

    Article  Google Scholar 

  • Elliott, J. M., 1973. The food of brown and rainbow trout (Salmo trutta and S. gairdneri) in relation to the abundance of drifting invertebrates in a mountain stream. Oecologia 12: 329–347.

    Article  Google Scholar 

  • Frieden, J. C., E. E. Peterson, J. A. Webb & P. M. Negus, 2014. Improving the predictive power of spatial statistical models of stream macroinvertebrates using weighted autocovariance functions. Environmental Modelling and Software 60: 320–330.

    Article  Google Scholar 

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding Processes and Downstream Linkages of Headwater Systems Headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land use. Bioscience 52: 905–916.

    Article  Google Scholar 

  • Griffith, M. B., E. M. Barrows & S. A. Perry, 1998. Lateral dispersal of adult aquatic insects (Plecoptera, Trichoptera) following emergence from headwater streams in forested Appalachian catchments. Annals of the Entomological Society of America 91: 195–201.

    Article  Google Scholar 

  • Grubbs, S. A., 2011. Influence of flow permanence on headwater macroinvertebrate communities in a Cumberland Plateau watershed, USA. Aquatic Ecology 45: 185–195.

    Article  Google Scholar 

  • Hansen, E. A. & G. P. Closs, 2007. Temporal consistency in the long-term spatial distribution of macroinvertebrate drift along a stream reach. Hydrobiologia 575: 361–371.

    Article  Google Scholar 

  • Hellmann, J. K., J. S. Erikson & S. A. Queenborough, 2015. Evaluating macroinvertebrate community shifts in the confluence of freestone and limestone streams. Journal of Limnology 74: 64–74.

    Google Scholar 

  • Imbert, J. B. & J. A. Perry, 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia 436: 191–208.

    Article  Google Scholar 

  • Kentucky Department for Environmental Protection (KYDEP), 2011. Laboratory Procedures for Macroinvertebrate Processing, Taxonomic Identification, and Reporting. Kentucky Energy and Environment Cabinet [available on internet at http://water.ky.gov/Documents/QA/Surface%20Water%20SOPs/BenthicMacroinvertebratesLabProcessingandIdentificationSOP.pdf].

  • Knispel, S. & E. Castella, 2003. Disruption of a longitudinal pattern in environmental factors and benthic fauna by a glacial tributary. Freshwater Biology 48: 604–618.

    Article  Google Scholar 

  • Lancaster, J., A. G. Hildrew & C. Gjerlov, 1996. Invertebrate drift and longitudinal transport processes in streams. Canadian Journal of Fisheries and Aquatic Sciences 53: 572–582.

    Article  Google Scholar 

  • Leung, E. S., J. S. Rosenfeld & J. R. Bernhardt, 2009. Habitat effects on invertebrate drift in a small trout stream: implications for prey availability to drift-feeding fish. Hydrobiologia 623: 113–125.

    Article  Google Scholar 

  • MacNally, R., E. Wallis & P. S. Lake, 2011. Geometry of biodiversity patterning: assemblages of benthic macroinvertebrates at tributary confluences. Aquatic Ecology 45: 43–54.

    Article  CAS  Google Scholar 

  • McCune, B., J. B. Grace & D. L. Urban, 2002. Analysis of Ecological Communities, Vol. 28. MjM Software Design, Gleneden Beach.

    Google Scholar 

  • Merovich Jr., G. T., J. T. Petty, M. P. Strager & J. B. Fulton, 2013. Hierarchical classification of stream condition: a house-neighborhood framework for establishing conservation priorities in complex riverscapes. Freshwater Science 32: 874–891.

    Article  Google Scholar 

  • Merriam, E. R., J. T. Petty, M. P. Strager, A. E. Maxwell & P. F. Ziemkiewicz, 2013. Scenario analysis predicts context-dependent stream response to landuse change in a heavily mined Central Appalachian watershed. Freshwater Science 32: 1246–1259.

    Article  Google Scholar 

  • Meyer, J. L., D. L. Strayer, J. B. Wallace, S. L. Eggert, G. S. Helfman, N. E. Leonard & M. C. Rains, 2007. The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association 43: 86–103.

    Article  Google Scholar 

  • Milesi, S. V. & A. S. Melo, 2014. Conditional effects of aquatic insects of small tributaries on mainstream assemblages: position within drainage network matters. Canadian Journal of Fisheries and Aquatic Sciences 71: 1–9.

    Article  Google Scholar 

  • Minshall, G. W. & P. V. Winger, 1968. The effect of reduction in stream flow on invertebrate drift. Ecology 49: 580–582.

    Article  Google Scholar 

  • Neale, M. W., M. J. Dunbar, J. Jones & A. T. Ibbotson, 2008. A comparison of the relative contributions of temporal and spatial variation in the density of drifting invertebrates in a Dorset (UK) chalk stream. Freshwater Biology 53: 1513–1523.

    Article  Google Scholar 

  • O’Hop, J. & J. B. Wallace, 1983. Invertebrate drift, discharge, and sediment relations in a southern Appalachian headwater stream. Hydrobiologia 98: 71–84.

    Article  Google Scholar 

  • Orlinskiy, P., R. Münze, M. Beketov, R. Gunold, A. Paschke, S. Knillmann & M. Liess, 2015. Forested headwaters mitigate pesticide effects on macroinvertebrate communities in streams: mechanisms and quantification. Science of the Total Environment 524: 115–123.

    Article  PubMed  Google Scholar 

  • Owenby, J., R. Heim, M. Burgin & D. Ezel, 2001. Climatography of the U.S. No. 81 – Supplement #3. Maps of Annual 1961–1990 Normal Temperature, Precipitation and Degree Days. National Climate Data Center, Asheville.

  • Palmer, M. A. & K. L. Hondula, 2014. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia. Environmental Science and Technology 48: 10552–10560.

    Article  CAS  PubMed  Google Scholar 

  • Parkyn, S. M. & B. J. Smith, 2011. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration. Environmental Management 48: 602–614.

    Article  PubMed  Google Scholar 

  • Phillippi, M. A. & A. Boebinger, 1986. A vegetational analysis of three small watersheds in Robinson Forest, Eastern Kentucky. Castanea 51: 11–30.

    Google Scholar 

  • Poff, N. L. & J. V. Ward, 1991. Drift responses of benthic invertebrates to experimental streamflow variation in a hydrologically stable stream. Canadian Journal of Fisheries and Aquatic Sciences 48: 1926–1936.

    Article  Google Scholar 

  • Pond, G. J., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.

    Article  Google Scholar 

  • Pond, G. J. & S. E. McMurray, 2002. A macroinvertebrate bioassessment index for headwater streams in the eastern coalfield region. Kentucky Department for Environmental Protection, Division of Water, Frankfort.

    Google Scholar 

  • Pond, G. J. & S. H. North, 2013. Application of a benthic observed/expected-type model for assessing Central Appalachian streams influenced by regional stressors in West Virginia and Kentucky. Environmental Monitoring and Assessment 185: 9299–9320.

    Article  CAS  PubMed  Google Scholar 

  • Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family-and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.

    Article  Google Scholar 

  • Pond, G. J., M. E. Passmore, N. D. Pointon, J. K. Felbinger, C. A. Walker, K. G. Krock, J. B. Fulton & W. L. Nash, 2014. Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in Central Appalachia. Environmental Management 54: 919–933.

    Article  PubMed  Google Scholar 

  • Pulliam, H. R., 1988. Sources, sinks, and population regulation. American Naturalist 132: 652–661.

    Article  Google Scholar 

  • Romaniszyn, E. D., J. J. Hutchens & J. B. Wallace, 2007. Aquatic and terrestrial invertebrate drift in southern Appalachian Mountain streams: implications for trout food resources. Freshwater Biology 52: 1–11.

    Article  Google Scholar 

  • Rouquette, J. R., M. Dallimer, P. R. Armsworth, K. J. Gaston, L. Maltby & P. H. Warren, 2013. Species turnover and geographic distance in an urban river network. Diversity and Distributions 19: 1429–1439.

    Article  Google Scholar 

  • Sabo, J. L., J. L. Bastow & M. E. Power, 2002. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society 21: 336–343.

    Article  Google Scholar 

  • Sample, B. E., R. J. Cooper, R. D. Greer & R. C. Whitmore, 1993. Estimation of insect biomass by length and width. American Midland Naturalist 1993: 234–240.

    Article  Google Scholar 

  • Siler, E. R., J. B. Wallace & S. L. Eggert, 2001. Long-term effects of resource limitation on stream invertebrate drift. Canadian Journal of Fisheries and Aquatic Sciences 58: 1624–1637.

    Article  Google Scholar 

  • Sundermann, A., S. Stoll & P. Haase, 2011. River restoration success depends on the species pool of the immediate surroundings. Ecological Applications 21: 1962–1971.

    Article  PubMed  Google Scholar 

  • Thompson, R. & C. Townsend, 2006. A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology 75: 476–484.

    Article  PubMed  Google Scholar 

  • Timpano, A. J., S. H. Schoenholtz, D. J. Soucek & C. E. Zipper, 2015. Salinity as a limiting factor for biological condition in mining-influenced Central Appalachian headwater streams. Journal of the American Water Resources Association 51: 240–250.

    Article  Google Scholar 

  • Tonkin, J. D., S. Stoll, A. Sundermann & P. Haase, 2014. Dispersal distance and the pool of taxa, but not barriers, determine the colonisation of restored river reaches by benthic invertebrates. Freshwater Biology 59: 1843–1855.

    Article  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1976. Field experiments on the drifting, colonization and continuous redistribution of stream benthos. The Journal of Animal Ecology 45: 759–772.

    Article  Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 1996. Effects of sampling area and subsampling procedure on comparisons of taxa richness among streams. Journal of the North American Benthological Society 15: 392–399.

    Article  Google Scholar 

  • Waters, T. F., 1964. Recolonization of denuded stream bottom areas by drift. Transactions of the American Fisheries Society 93: 311–315.

    Article  Google Scholar 

  • Waters, T. F., 1965. Interpretation of invertebrate drift in streams. Ecology 46: 327–334.

    Article  Google Scholar 

  • Williamson, T. N., C. T. Agouridis, C. D. Barton, J. A. Villines & J. G. Lant, 2015. Classification of ephemeral, intermittent, and perennial stream reaches using a TOPMODEL-based approach. Journal of the American Water Resources Association 51: 1739–1759.

    Article  Google Scholar 

  • Wilson, M. J. & M. E. McTammany, 2014. Tributary and mainstem benthic macroinvertebrate communities linked by direct dispersal and indirect habitat alteration. Hydrobiologia 738: 75–85.

    Article  Google Scholar 

  • Wipfli, M. S. & D. P. Gregovich, 2002. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshwater Biology 47: 957–969.

    Article  Google Scholar 

  • Woods, A. J., J. M. Omernik, W. H. Martin, G. J. Pond, W. M. Andrews, S. M. Call, J. A. Comstock & D. D. Taylor, 2002. Ecoregions of Kentucky (2 Sided Color Poster with Map, Descriptive Text, Summary Tables, and Photographs, Map Scale 1:1,000,000). US Geological Survey, Reston.

Download references

Acknowledgments

This study was conducted as part of EPA’s Regional Research Partnership Program. We thank R. Pomponio and J. Forren (US EPA Region 3) and M. Bagley (US EPA ORD, Cincinnati) for programmatic support. E. D’Amico (Dynamac, Inc.) provided GIS support. Previous versions of the manuscript were improved by L. Reynolds and K. Krock (US EPA Region 3) and two anonymous reviewers. We would also like to thank C. Barton and the University of Kentucky’s Robinson Forest Research Committee for logistical support, and field assistance from M. Compton, M. Vogel, K. Howard, A. Rogers, S. Stiles, and J. Stermer. Although this research was supported by EPA, the views and opinions expressed in this article are those of the authors and do not necessarily represent the official views or positions of the EPA or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Pond.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pond, G.J., Fritz, K.M. & Johnson, B.R. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream. Hydrobiologia 779, 75–91 (2016). https://doi.org/10.1007/s10750-016-2800-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2800-0

Keywords

Navigation