Skip to main content
Log in

Temporal changes in cladoceran assemblages subjected to a low calcium environment: combining the sediment record with long-term monitoring data

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lakewater calcium (Ca) decline affects softwater lakes across the Canadian Shield. Ca decline is one consequence of acid deposition, and has impeded biological recovery in formerly acidified lakes. Reduced Ca availability may advantage taxa better adapted to low Ca waters. Crosson Lake in south-central Ontario (Canada) has an extensive monitoring record and has experienced strong Ca decline since the late 1970s, recently falling below 1.5 mg L−1, a threshold value for some large Daphnia O.F. Müller, 1785 taxa. Paleolimnological analysis of the sedimentary cladoceran assemblages revealed that changes associated with the Ca decline began in the early 1970s. Relative abundances of the jelly-clad Holopedium glacialis Rowe, 2007 and the Daphnia pulex complex increased while Ca-sensitive members of the Daphnia longispina complex decreased. Zooplankton net hauls (1981–2010) corroborate the paleolimnological analysis, revealing that increases in the D. pulex complex were due to Daphnia catawba Coker, 1926 (a taxon tolerant of low Ca). Lakewater Ca, dissolved organic carbon and total phosphorus explain a significant amount of variation within the cladoceran community; however, the relationship between Ca concentration and the daphniid community was most apparent. The Crosson Lake paleolimnological and direct monitoring data may describe ecological changes that are also occurring in many other softwater lakes across the Canadian Shield and elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, T. & D. O. Hessen, 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.

    Article  Google Scholar 

  • Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Volume 1: Developments in Paleoenvironmental Research. Kluwer Academic Publishers, Springer, The Netherlands: 171–203.

    Google Scholar 

  • Ashforth, D. & N. D. Yan, 2008. The interactive effects of calcium concentration and temperature on the survival and reproduction of Daphnia pulex at high and low food concentrations. Limnology and Oceanography 53: 420–432.

    Article  CAS  Google Scholar 

  • Barrow, J. L., A. Jeziorski, K. M. Rühland, K. R. Hadley & J. P. Smol, 2014. Diatoms indicate that calcium decline, not acidification, explains recent cladoceran assemblage changes in south-central Ontario softwater lakes. Journal of Paleolimnology 52: 61–75.

    Article  Google Scholar 

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphic sequence. New Phytologist 132: 155–170.

    Article  Google Scholar 

  • Bottrell, H. H., 1975. Generation time, length of life, instar duration and frequency of moulting, and their relationship to temperature in eight species of Cladocera from the River Thames, Reading. Oecologia 19: 129–140.

    Article  Google Scholar 

  • Cairns, A., 2010. Field assessments and evidence of impacts of calcium decline on Daphnia (Crustacea, Anomopoda) in Canadian Shield lakes. M.Sc. thesis, Department of Biology, York University, Toronto.

  • Cairns, A. & N. Yan, 2009. A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environmental Reviews 17: 67–79.

    Article  CAS  Google Scholar 

  • Cogbill, C. V. & G. E. Likens, 1974. Acid precipitation in the northeastern United States. Water Resource Research 10: 1133–1137.

    Article  CAS  Google Scholar 

  • Couture, R. M., H. de Wit, K. Tominaga, P. Kiuru & I. Markelov, 2015. Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs. Journal of Geophysical Research: Biogeosciences 120: 2441–2456.

    CAS  Google Scholar 

  • Davidson, T. A., C. D. Sayer, M. R. Perrow, M. Bramm & E. Jeppesen, 2007. Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. Journal of Paleolimnology 38: 117–134.

    Article  Google Scholar 

  • Dixit, S. S., A. S. Dixit & J. P. Smol, 1992. Assessment of changes in lake water chemistry in Sudbury area lakes since preindustrial times. Canadian Journal of Fisheries and Aquatic Sciences 49: 8–16.

    Article  CAS  Google Scholar 

  • Futter, M. N., 2003. Patterns and trends in Southern Ontario lake ice phenology. Environmental Monitoring and Assessment 88: 431–444.

    Article  PubMed  Google Scholar 

  • Glew, J. R., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.

    Article  Google Scholar 

  • Glew, J. R., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  • Grimm, E. C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13: 13–35.

    Article  Google Scholar 

  • Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of long-term water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences 53: 1–17.

    Article  CAS  Google Scholar 

  • Hebert, P. D. N., 1995. The Daphnia of North America: an illustrated fauna—CD-ROM. Cyber Natural Software. University of Guelph.

  • Hessen, D. O., B. A. Faafeng & T. Andersen, 1995. Competition or niche segregation between Holopedium and Daphnia; empirical light on abiotic key parameters. Hydrobiologia 307: 253–261.

    Article  Google Scholar 

  • Houle, D., R. Ouimet, S. Couture & C. Gagnon, 2006. Base cation reservoirs in soil control the buffering capacity of lakes in forested catchments. Canadian Journal of Fisheries and Aquatic Sciences 63: 471–474.

    Article  CAS  Google Scholar 

  • Jeffries, D. S., T. G. Brydges, P. J. Dillon & W. Keller, 2003. Monitoring the results of Canada/U.S.A. acid rain control programs: some lake Responses. Environmental Monitoring and Assessment 88: 3–19.

    Article  CAS  PubMed  Google Scholar 

  • Jeziorski, A. & N. D. Yan, 2006. Species identity and aqueous calcium concentrations as determinants of calcium concentrations of freshwater crustacean zooplankton. Canadian Journal of Fisheries and Aquatic Sciences 63: 1007–1013.

    Article  CAS  Google Scholar 

  • Jeziorski, A., N. D. Yan, A. M. Paterson, A. M. DeSellas, M. A. Turner, D. S. Jeffries, B. Keller, R. C. Weeber, D. K. McNicol, M. E. Palmer, K. McIver, K. Arseneau, B. K. Ginn, B. F. Cumming & J. P. Smol, 2008. The widespread threat of calcium decline in fresh waters. Science 322: 1374–1377.

    Article  CAS  PubMed  Google Scholar 

  • Jeziorski, A., A. M. Paterson & J. P. Smol, 2012. Changes since the onset of acid deposition among calcium-sensitive cladoceran taxa within softwater lakes of Ontario, Canada. Journal of Paleolimnology 48: 323–337.

    Article  Google Scholar 

  • Jeziorski, A., A. J. Tanentzap, N. D. Yan, A. M. Paterson, M. E. Palmer, J. B. Korosi, J. A. Rusak, M. T. Arts, W. Keller, R. Ingram, A. Cairns & J. P. Smol, 2015. The jellification of north temperate lakes. Proceedings of the Royal Society B 282: 20142449. doi:10.1098/rspb.2014.2449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kattel, G. R., R. W. Battarbee, A. Mackay & H. J. B. Birks, 2007. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology 38: 157–181.

    Article  Google Scholar 

  • Keller, W., 2009. Limnology in northeastern Ontario: from acidification to multiple stressors. Canadian Journal of Fisheries and Aquatic Sciences 66: 1189–1198.

    Article  CAS  Google Scholar 

  • Keller, W. & J. R. Pitblado, 1989. The distribution of crustacean zooplankton in Northern Ontario. Canadian Journal of Biogeography 16: 249–259.

    Article  Google Scholar 

  • Keller, W. & M. Conlon, 1994. Crustacean zooplankton communities and lake morphometry in Precambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 2424–2434.

    Article  Google Scholar 

  • Keller, W., J. M. Gunn & N. D. Yan, 1999. Acid rain – perspectives on lake recovery. Journal of Aquatic Ecosystem Stress and Recovery 6: 2107–2216.

    Google Scholar 

  • Keller, W., N. D. Yan, K. M. Somers & J. H. Heneberry, 2002. Crustacean zooplankton communities in lakes recovering from acidification. Canadian Journal of Fisheries and Aquatic Sciences 59: 726–735.

    Article  CAS  Google Scholar 

  • Kim, N., B. Walseng & N. D. Yan, 2012. Will environmental calcium declines in Canadian Shield lakes help or hinder Bythotrephes establishment success? Canadian Journal of Fisheries and Aquatic Sciences 69: 810–820.

    Article  CAS  Google Scholar 

  • Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 4–41.

    Google Scholar 

  • Korosi, J. B. & J. P. Smol, 2012a. An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 1 – the Daphniidae, Leptodoridae, Bosminidae, Polyphemidae, Holopedidae, Sididae, and Macrothricidae. Journal of Paleolimnology 48: 571–586.

    Article  Google Scholar 

  • Korosi, J. B. & J. P. Smol, 2012b. An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 2 – the Chydoridae. Journal of Paleolimnology 48: 587–622.

    Article  Google Scholar 

  • Korosi, J. B., A. Jeziorski & J. P. Smol, 2011. Using morphological characters of subfossil daphniid postabdominal claws to improve taxonomic resolution within species complexes. Hydrobiologia 676: 117–128.

    Article  Google Scholar 

  • Kurek, J., J. B. Korosi, A. Jeziorski & J. P. Smol, 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612.

    Article  Google Scholar 

  • Lundstedt, L. & M. T. Brett, 1991. Differential growth rates of three cladoceran species in response to mono- and mixed-algal cultures. Limnology and Oceanography 36: 159–165.

    Article  Google Scholar 

  • Malley, D. F. & P. S. S. Chang, 1986. Increase in the abundance of cladocera at pH 5.1 in experimentally-acidified lake 223, Experimental Lakes Area, Ontario. Water Air Soil Pollution 30: 629–638.

    Article  CAS  Google Scholar 

  • McQueen, D. J. & N. D. Yan, 1993. Metering filtration efficiency of freshwater zooplankton hauls: reminders from the past. Journal of Plankton Research 15: 57–65.

    Article  Google Scholar 

  • Michelutti, N., J. M. Blais, B. F. Cumming, A. M. Paterson, K. Rühland, A. P. Wolfe & J. P. Smol, 2010. Do spectrally-inferred determinations of chlorophyll a reflect trends in lake trophic status? Journal of Paleolimnology 43: 205–217.

    Article  Google Scholar 

  • Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. de Wit, M. Forsius, T. Høgåsen, A. Wilander, B. L. Skjelkvåle, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopácek & J. Vesely, 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–540.

    Article  CAS  PubMed  Google Scholar 

  • Molot, L. A. & P. J. Dillon, 2008. Long-term trends in catchment export and lake concentrations of base cations in the Dorset study area, central Ontario. Canadian Journal of Fisheries and Aquatic Sciences 65: 809–820.

    Article  CAS  Google Scholar 

  • Neary, B. P. & P. J. Dillon, 1988. Effects of sulphur deposition on lake-water chemistry in Ontario, Canada. Nature 333: 340–343.

    Article  CAS  Google Scholar 

  • Norberg, M., C. Bigler & I. Renberg, 2008. Monitoring compared with paleolimnology: implications for definition of reference condition in limed lakes in Sweden. Environmental Monitoring and Assessment 146: 295–308.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Michin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, & H. Wagner, 2014. vegan: Community Ecology Package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan.

  • Paterson, A. M., J. G. Winter, K. H. Nicholls, B. J. Clark, C. W. Ramcharan, N. D. Yan & K. M. Somers, 2008. Long-term changes in phytoplankton composition in seven Canadian Shield lakes in response to multiple anthropogenic stressors. Canadian Journal of Fisheries and Aquatic Sciences 65: 846–861.

    Article  Google Scholar 

  • Persaud, A. D., P. J. Dillon, D. Lasenby & N. D. Yan, 2009. Stable isotope variability of meso-zooplankton along a gradient of dissolved organic carbon. Freshwater Biology 54: 1705–1719.

    Article  CAS  Google Scholar 

  • Pichlová-Ptáčníková, R. & H. A. Vanderploeg, 2011. The quick and the dead: might differences in escape rates explain the changes in the zooplankton community composition of Lake Michigan after invasion by Bythotrephes? Biological Invasions 13: 2595–2604.

    Article  Google Scholar 

  • Prater, C., N. D. Wagner & P. C. Frost, 2016. Effects of calcium and phosphorus limitation on the nutritional ecophysiology of Daphnia. Limnology and Oceanography 61: 268–278.

    Article  CAS  Google Scholar 

  • R Development Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Riessen, H. P., R. D. Linley, I. Altshuler, M. Rabus, T. Sollradl, H. Clausen-Schaumann, C. Laforsch & N. D. Yan, 2012. Changes in water chemistry can disable plankton prey defences. Proceedings of the National Academy of Science USA 109: 15377–15382.

    Article  CAS  Google Scholar 

  • Rowe, C. L., S. J. Adamowicz & P. D. N. Hebert, 2007. Three new cryptic species of the freshwater zooplankton genus Holopedium (Crustacea: Branchiopoda: Ctenopoda), revealed by genetic methods. Zootaxa 1656: 1–49.

    Google Scholar 

  • Rusak, J. A. & P. K. Montz, 2009. Sampling requirements and the implications of reduced sampling effort for the estimation of annual zooplankton population and community dynamics in north temperate lakes. Limnology and Oceanography Methods 7: 535–544.

    Article  Google Scholar 

  • Schindler, D. W., P. J. Curtis, S. E. Bayley, B. R. Parker, K. G. Beaty & M. P. Stainton, 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36: 9–28.

    Article  CAS  Google Scholar 

  • Shapiera, M., A. Jeziorski, N. D. Yan & J. P. Smol, 2011. Calcium content of littoral Cladocera in three softwater lakes of the Canadian Shield. Hydrobiologia 678: 77–83.

    Article  CAS  Google Scholar 

  • Shapiera, M., A. Jeziorski, A. M. Paterson & J. P. Smol, 2012. Cladoceran response to calcium decline and the subsequent inadvertent liming of a softwater Canadian lake. Water Air Soil Pollution 223: 2437–2446.

    Article  CAS  Google Scholar 

  • Smirnov, N. N., 1996. Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. In Dumont, H. J. (ed.), Guide to the identification of the microinvertebrates of the continental waters of the world. SPB Academy Publishing, Amsterdam.

    Google Scholar 

  • Stoddard, J. L., D. S. Jeffries, A. Lukewille, T. A. Clair, P. J. Dillon, C. T. Driscoll, M. Forsius, M. Johnannessen, J. S. Kahl, J. H. Kellogg, A. Kemp, J. Mannio, D. T. Monteith, P. S. Murdoch, S. Patrick, A. Rebsdorf, B. L. Skjelkvale, M. P. Stainton, T. Traaen, H. van Dam, K. E. Webster, J. Wieting & A. Wilander, 1999. Regional trends in aquatic recovery from lake acidification in North America and Europe. Nature 401: 575–578.

    Article  CAS  Google Scholar 

  • Sweetman, J. N. & J. P. Smol, 2006. A guide to the identification of cladoceran remains (Crustacea: Branchiopoda) in Alaskan lake sediments. Archiv für Hydrobiologie (Supplement) 151: 353–394.

    Google Scholar 

  • Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Swiecie.

    Google Scholar 

  • Tan, Q. & W. Wang, 2010. Interspecific differences in calcium content and requirement in four freshwater cladocerans explained by biokinetic parameters. Limnology and Oceanography 55: 1426–1434.

    Article  CAS  Google Scholar 

  • Urabe, J., 1991. Effect of food concentration on growth, reproduction and survivorship of Bosmina longirostris (Cladocera): an experimental study. Freshwater Biology 25: 1–8.

    Article  Google Scholar 

  • Vinyard, G. L. & R. A. Menger, 1980. Chaoborus americanus predation on various zooplankters; functional response and behavioral observations. Oecologia 45: 90–93.

    Article  Google Scholar 

  • Waervågen, S. B., N. A. Rukke & D. O. Hessen, 2002. Calcium content of crustacean zooplankton and its potential role in species distribution. Freshwater Biology 47: 1866–1878.

    Article  Google Scholar 

  • Yan, N. D., K. M. Somers, R. E. Girard, A. M. Paterson, B. Keller, C. W. Ramcharan, J. A. Rusak, R. Ingram, G. E. Morgan & J. Gunn, 2008. Long-term trends in zooplankton of Dorset, Ontario lakes: the probable interactive effects of changes in pH, TP, DOC and predators. Canadian Journal of Fisheries and Aquatic Sciences 65: 862–877.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the Natural Sciences and Engineering Research Council awarded to John P. Smol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Smol.

Additional information

Handling editor: Jasmine Saros

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redmond, L.E., Jeziorski, A., Paterson, A.M. et al. Temporal changes in cladoceran assemblages subjected to a low calcium environment: combining the sediment record with long-term monitoring data. Hydrobiologia 776, 85–97 (2016). https://doi.org/10.1007/s10750-016-2737-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2737-3

Keywords

Navigation