Skip to main content
Log in

Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ecological applications of stable isotope analysis are dependent on knowing consumer-diet discrimination factors (Δ) and consumer metabolic turnover rates (m). We used an 80-day laboratory experiment to test for differences in the δ13C, δ15N and m of two species of crayfish (Orconectes rusticus and O. virilis) fed one of two diets (algae wafers and bloodworms). Over the course of the experiment, the δ13C and δ15N signatures of the crayfish approached equilibrium with those of their diets. We fit our data to a growth-based model and found δ13C, δ15N, and m to be largely indistinguishable between species, except in the case of δ15N and m of crayfish on the algae diet. We thus pooled parameters to calculate Δ13C (algae diet: 1.57‰ [95% confidence interval: 0.86–2.35]; bloodworm diet: 0.8‰ [0.14–1.55]) and Δ15N (bloodworm diet: 1.2‰ [0.32–2.11]), and used species-specific data to calculate Δ15N for the algae diet (O. rusticus: 2.54‰ [2.06–3.08]; O. virilis: 3.35‰ [2.53–4.51]). Our results provide values of stable isotope Δ and m for applications to crayfish, and offer a rare comparison of these values between two closely related species and to commonly used literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bergman, D. A. & P. A. Moore, 2003. Field observations of intraspecific agonistic behavior of two crayfish species. Biological Bulletin 205: 26–35.

    Article  PubMed  Google Scholar 

  • Boecklen, W. J., C. T. Yarnes, B. A. Cook & A. C. James, 2011. On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics 42: 411–440.

    Article  Google Scholar 

  • Bond, A. L. & A. W. Diamond, 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecological Application 21: 1017–1023.

    Article  Google Scholar 

  • Bosley, K. L., D. A. Witting, R. C. Chambers & S. C. Wainright, 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Marine Ecology Progress Series 236: 233–240.

    Article  Google Scholar 

  • Buchheister, A. & R. J. Latour, 2010. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Canadian Journal of Fisheries and Aquatic Sciences 67: 445–461.

    Article  CAS  Google Scholar 

  • Carolan, J. V., D. Mazumder, C. Dimovski, R. Diocares & J. Twining, 2012. Biokinetics and discrimination factors for 13C and δ15N in the omnivorous freshwater crustacean, Cherax destructor. Marine Freshwater Research 63: 878–886.

    Article  CAS  Google Scholar 

  • Caut, S., E. Angulo & F. Courchamp, 2008. Discrimination factors (Δ15N and Δ13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology 22: 255–263.

    Article  Google Scholar 

  • Caut, S., E. Angulo & F. Courchamp, 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443–453.

    Article  CAS  Google Scholar 

  • Charlebois, P. M. & G. A. Lamberti, 1996. Invading crayfish in a Michigan stream: direct and indirect effects on periphyton and macroinvertebrates. Journal of the North American Benthological Society 15: 551–563.

    Article  Google Scholar 

  • Cherel, Y., K. A. Hobson, C. Guinet & C. Vanpe, 2007. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. Journal of Animal Ecology 76: 826–836.

    Article  PubMed  Google Scholar 

  • Cherel, Y., S. Ducatez, C. Fontaine, P. Richard & C. Guinet, 2008. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Marine Ecology Progress Series 370: 239–247.

    Article  Google Scholar 

  • Dekar, M. P., D. D. Magoulick & G. R. Huxel, 2009. Shifts in the trophic base of intermittent stream food webs. Hydrobiologia 635: 263–277.

    Article  CAS  Google Scholar 

  • del Rio, C. M., N. Wolf, S. A. Carleton & L. Z. Gannes, 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews of the Cambridge Philosophical Society 84: 91–111.

    Article  PubMed  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Et Cosmochimica Acta 42: 495–506.

    Article  CAS  Google Scholar 

  • Ercoli, F., T. J. Ruokonen, H. Hämäläinen & R. I. Jones, 2014. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes? Biological Invasions 16: 2025–2036.

    Article  Google Scholar 

  • Fantle, M. S., A. I. Dittel, S. M. Schwalm, C. E. Epifanio & M. L. Fogel, 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120: 416–426.

    Article  Google Scholar 

  • Fortino, K. & R. P. Creed Jr, 2006. Abiotic factors, competition or predation: what determines the distribution of young crayfish in a watershed? Hydrobiologia 575: 301–314.

    Article  Google Scholar 

  • Fry, B. & C. Arnold, 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54: 200–204.

    Article  Google Scholar 

  • Fry, B. & E. B. Sherr, 1984. Δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Sciences 27: 13–47.

    CAS  Google Scholar 

  • Hammond, K. S., J. W. Hollows, C. R. Townsend & P. M. Lokman, 2006. Effects of temperature and water calcium concentration on growth, survival and moulting of freshwater crayfish, Paranephrops zealandicus. Aquaculture 251: 271–279.

    Article  CAS  Google Scholar 

  • Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.

    Article  Google Scholar 

  • Hesslein, R. H., K. A. Hallard & P. Ramlal, 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences 50: 2071–2076.

    Article  CAS  Google Scholar 

  • Hilderbrand, G. V., S. D. Farley, C. T. Robbins, T. A. Hanley, K. Titus & C. Servheen, 1996. Use of stable isotopes to determine diets of living and extinct bears. Canadian Journal of Zoology 74: 2080–2088.

    Article  Google Scholar 

  • Hill, A. M., D. M. Sinars & D. M. Lodge, 1993. Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality. Oecologia 94: 303–306.

    Article  Google Scholar 

  • Hobson, K. A. & R. G. Clark, 1992. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. The Condor 94: 181–188.

    Article  Google Scholar 

  • Hobson, K. A., R. T. Alisauskas & R. G. Clark, 1993. Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. The Condor 95: 388–394.

    Article  Google Scholar 

  • Jackson, M. C., T. Jones, M. Milligan, D. Sheath, J. Taylor, A. Ellis, J. England & J. Grey, 2014. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshwater Biology 59: 1123–1135.

    Article  Google Scholar 

  • Kreps, T.A., E. R. Larson & D. M. Lodge, 2016. Do invasive rusty crayfish (Orconectes rusticus) decouple benthic and pelagic energy flows in lake food webs? Freshwater Science (in press).

  • Lodge, D. M., C. A. Taylor, D. M. Holdich & J. Skurdal, 2000. Reducing impacts of exotic crayfish introductions. Fisheries 25: 21–23.

    Article  Google Scholar 

  • McCarthy, J. M., C. L. Hein, J. D. Olden & M. J. Vander Zanden, 2006. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshwater Biology 51: 224–235.

    Article  Google Scholar 

  • McClellan, C. M., J. Braun-McNeill, L. Avens, B. P. Wallace & A. J. Read, 2010. Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. Journal of Experimental Marine Biology and Ecology 387: 44–51.

    Article  Google Scholar 

  • Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Momot, W. T., 1995. Redefining the role of crayfish in aquatic ecosystems. Reviews in Fisheries Science 3: 33–63.

    Article  Google Scholar 

  • Momot, W. T., H. Gowing & P. D. Jones, 1978. The dynamics of crayfish and their role in ecosystems. American Midland Naturalist 99: 10–35.

    Article  Google Scholar 

  • Moore, J. W. & B. X. Semmens, 2008. Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters 11: 470–480.

    Article  PubMed  Google Scholar 

  • Mundahl, N. D., 1989. Seasonal and diel changes in thermal tolerance of the crayfish Orconectes rusticus, with evidence for behavioral thermoregulation. Journal of the North American Benthological Society 8: 173–179.

    Article  Google Scholar 

  • Newsome, S. D., M. T. Tinker, D. H. Monson, O. T. Oftedal, K. Ralls, M. M. Staedler, M. L. Fogel & J. A. Estes, 2009. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90: 961–974.

    Article  PubMed  Google Scholar 

  • Nilsson, E., C. T. Solomon, K. A. Wilson & T. V. Willis, 2012. Effects of an invasive crayfish on trophic relationships in north-temperate lake food webs. Freshwater Biology 57: 10–23.

    Article  Google Scholar 

  • Olsson, K., P. Nyström, P. Stenroth, E. Nilsson, M. Svensson & W. Granéli, 2008. The influence of food quality and availability on trophic position, carbon signature, and growth rate of an omnivorous crayfish. Canadian Journal of Fisheries and Aquatic Sciences 65: 2293–2304.

    Article  CAS  Google Scholar 

  • Olsson, K., P. Stenroth, P. Nyström & W. Granéli, 2009. Invasions and niche width: does niche width of an introduced crayfish differ from a native crayfish? Freshwater Biology 54: 1731–1740.

    Article  Google Scholar 

  • Peters, J. A. & D. M. Lodge, 2013. Habitat, predation, and coexistence between invasive and native crayfishes: prioritizing lakes for invasion prevention. Biological Invasions 15: 2489–2502.

    Article  Google Scholar 

  • Peters, J. A., M. J. Cooper, S. M. Creque, M. S. Kornis, J. T. Maxted, W. L. Perry, F. W. Schueler, T. P. Simon, C. A. Taylor, R. F. Thoma, D. G. Uzarski & D. M. Lodge, 2014. Historical changes and current status of crayfish diversity and distribution in the Laurentian Great Lakes. Journal of Great Lakes Research 40: 35–46.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.

    Article  PubMed  Google Scholar 

  • R Core Team, 2014. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Reynolds, J., C. Souty-Grosset & A. Richardson, 2013. Ecological roles of crayfish in freshwater and terrestrial habitats. Freshwater Crayfish 19: 197–218.

    Google Scholar 

  • Ritz, C. & J. C. Streibig, 2008. Model reduction and parameter models. In Gentleman, R., K. Hornik & G. Parmigiani (eds), Nonlinear Regression with R. Springer Science, New York: 114–118.

    Google Scholar 

  • Rosenblatt, A. E. & M. R. Heithaus, 2013. Slow isotope turnover rates and low discrimination values in the American alligator: implications for interpretation of ectotherm stable isotope data. Physiological and Biochemical Zoology 86: 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Roth, B. M., C. L. Hein & M. J. Vander Zanden, 2006. Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes rusticus) in lake littoral zones. Canadian Journal of Fisheries and Aquatic Sciences 63: 335–344.

    Article  Google Scholar 

  • Rudnick, D. & V. Resh, 2005. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshwater Biology 50: 1323–1336.

    Article  Google Scholar 

  • Ruokonen, T. J., J. Karjalainen, M. Kiljunen, M. Pursiainen & H. Hämäläinen, 2011. Do introduced crayfish affect benthic fish in stony littoral habitats of large boreal lakes? Biological Invasions 14: 813–825.

    Article  Google Scholar 

  • Solomon, C. T., S. R. Carpenter, M. K. Clayton, J. J. Cole, J. J. Coloso, M. L. Pace, M. J. Vander Zanden & B. C. Weidel, 2011. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92: 1115–1125.

    Article  PubMed  Google Scholar 

  • Stenroth, P., N. Holmqvist, P. Nyström, O. Berglund, P. Larsson & W. Granéli, 2006. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment, and season. Canadian Journal of Fisheries and Aquatic Sciences 63: 821–831.

    Article  CAS  Google Scholar 

  • Thomas, S. M. & T. W. Crowther, 2014. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. Journal of Animal Ecology 84: 861–870.

    Article  Google Scholar 

  • Twardochleb, L. A., J. D. Olden & E. R. Larson, 2013. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshwater Science 32: 1367–1382.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J., G. Cabana & J. B. Rasmussen, 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences 54: 1142–1158.

    Article  Google Scholar 

  • Vander Zanden, M. J., J. M. Casselman & J. B. Rasmussen, 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401: 464–467.

    Article  CAS  Google Scholar 

  • Venarsky, M. P., B. M. Huntsman, A. D. Huryn, J. P. Benstead & B. R. Kuhajda, 2014. Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems. Oecologia 176: 859–869.

    Article  PubMed  Google Scholar 

  • Webb, S. C., R. E. M. Hedges & S. J. Simpson, 1998. Diet quality influences the δ13C and δ15N of locusts and their biochemical components. The Journal of Experimental Biology 201: 2903–2911.

    PubMed  CAS  Google Scholar 

  • Whitledge, G. W. & C. F. Rabeni, 1997. Energy sources and ecological role of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis. Canadian Journal of Fisheries Aquatic Sciences 54: 2555–2563.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Central Michigan University and Shedd Aquarium for providing funding. We also thank Matthew Cooper, James Student, and Daelyn Woolnough for allowing us to conduct the experiment using their lab space and equipment, Jonathan Benstead for early conversations on crayfish stable isotope discrimination factors, and two anonymous reviewers for their insightful comments on the manuscript. Mael Glon thanks Stanley and Barbara Adams for early inspiration in the study of crayfish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Glon.

Additional information

Handling editor: M. Power

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glon, M.G., Larson, E.R. & Pangle, K.L. Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae). Hydrobiologia 768, 51–61 (2016). https://doi.org/10.1007/s10750-015-2527-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2527-3

Keywords

Navigation