Skip to main content

Advertisement

Log in

Taxonomic- and trait-based recolonization dynamics of a riverine fish assemblage following a large-scale human-mediated disturbance: the red mud disaster in Hungary

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examined the recovery of a fish assemblage following the catastrophic spill of highly alkaline (pH ~13) red sludge into a lowland river (i) to characterize taxonomic- and trait-based colonization of fishes in the river in the first 3 years of the recovery and (ii) to determine which structural- and trait-based variables best predicted colonization. Species richness showed comparable values to pre-disturbance state <1 year after the spill. We found only moderate changes in the dominance of the most abundant species between pre- and post-disturbance periods, and consistent changes in the relative abundance of some rare species during the post-disturbance period. Frequency of occurrence (%) of the fishes in the watershed and their relative abundance (%) proved to be the most important predictor variables in colonization, whereas trait-based variables had a less important role. Our study about one of the largest scale and most serious documented fish kill shows that both taxonomic- and trait-based structure of fish assemblages can regenerate remarkably fast in a modified river and also shows that unfortunate chemical spills provide insights into the assembly of stream fish assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, S. B. & M. L. Warren, 2005. Recolonization by warmwater fishes and crayfishes after severe drought in upper Coastal Plain hill streams. Transactions of the American fisheries Society 134: 1173–1192.

    Article  Google Scholar 

  • Albanese, B., P. Angermeier & J. T. Peterson, 2009. Does mobility explain variation in colonization and population recovery among stream fishes? Freshwater Biology 54: 1444–1460.

    Article  Google Scholar 

  • Collins, S. L., K. N. Suding, E. E. Cleland, M. Batty, S. C. Pennings, K. L. Gross, J. B. Grace, L. Gough, J. E. Fargione & C. M. Clark, 2008. Rank clocks and plant community dynamics. Ecology 89: 3534–3541.

    Article  PubMed  Google Scholar 

  • Czeglédi, I. & T. Erős, 2013. Characterizing congruency in the long-term taxonomic and functional variability of a stream fish assemblage. Fundamental and Applied Limnology 183: 153–162.

  • De’ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for the analysis of complex ecological data. Ecology 81: 3178–3192.

    Article  Google Scholar 

  • del Moral, R. & L. C. Bliss, 1993. Mechanism of primary succession: insights resulting from the eruption of the Mount St Helens. Advances in Ecological Research 24: 1–66.

    Article  Google Scholar 

  • Detenbeck, N. E., P. W. DeVore, G. J. Niemi & A. Lima, 1992. Recovery of temperate-stream fish communities from disturbance: a review of case studies and synthesis of theory. Environmental Management 16: 33–53.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips & C. Townsend, 2011. Invertebrate community responses to land use at a broad spatial scale: trait and taxonomic measures compared in New Zealand rivers. Freshwater Biology 56: 1670–1688.

    Article  Google Scholar 

  • Erős, T., 2005. Life history diversification in the Middle Danubian fish fauna – a conservation perspective. Archiv für Hydrobiologie, Supplementband 158, Large Rivers 16: 289–304.

    Google Scholar 

  • Erős, T., 2007. Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwater Biology 52: 1400–1415.

    Article  Google Scholar 

  • Erős, T., J. D. Olden, R. S. Schick, D. Schmera & M. J. Fortin, 2012a. Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecology 27: 303–317.

    Article  Google Scholar 

  • Erős, T., P. Sály, P. Takács, A. Specziár & P. Bíró, 2012b. Temporal variability in the spatial and environmental determinants of functional metacommunity organization – stream fish in a human-modified landscape. Freshwater Biology 57: 1914–1928.

    Article  Google Scholar 

  • Frimpong, E. A. & P. L. Angermeier, 2010. Trait-based approaches in the analysis of stream fish communities. American Fisheries Society Symposium 73: 109–136.

    Google Scholar 

  • Gelencsér, A., N. Kováts, B. Túróczi, Á. Rostási, A. Hoffer, K. Imre, I. Nyírő-Kósa, D. Csákberényi-Malasics, Á. Tóth, A. Czitrovszky, A. Nagy, S. Z. Nagy, A. Ács, A. Kovács, Á. Ferincz, Z. Hartyáni & M. Pósfai, 2011. The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environmental Science and Technology 45: 1608–1615.

    Article  PubMed  Google Scholar 

  • Gotelli, N. J. & C. M. Taylor, 1999. Testing metapopulation models with stream-fish assemblages. Evolutionary Ecology Research 1: 835–845.

    Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. Journal of the North American Benthological Society 8: 293–307.

    Article  Google Scholar 

  • Harka, Á., Z. Szepesi & L. Nagy, 2009. Faunal survey on the fish community of Marcal River. Pisces Hungarici 3: 27–32. (in Hungarian with a summary in English).

    Google Scholar 

  • Harka, Á. & Z. Szepesi, 2011. Investigation on the fish fauna on the side streams of the Marcal River. Pisces Hungarici 5: 99–110. (in Hungarian with a summary in English).

    Google Scholar 

  • Harpole, W. S. & D. Tilman, 2006. Non-neutral patterns of species abundance in grassland communities. Ecology Letters 9: 15–23.

    Google Scholar 

  • Heino, J., D. Schmera & T. Erős, 2013. A macroecological perspective of trait patterns in stream communities. Freshwater Biology 58: 1539–1555.

    Article  Google Scholar 

  • Hitt, N. P. & J. H. Roberts, 2012. Hierarchical spatial structure of stream fish colonization and extinction. Oikos 121: 127–137.

    Article  Google Scholar 

  • Hobbs, R. J. & L. F. Huenekke, 1992. Disturbance, diversity and invasion: implications for conservation. Conservation Biology 6: 324–337.

    Article  Google Scholar 

  • Jurajda, P., 1998. Drift of larval and juvenile fishes, especially Rhodeus sericeus and Rutilus rutilus, in the River Morava (Danube basin). Archiv für Hydrobiologie 141: 231–241.

    Google Scholar 

  • Kubach, K. M., M. C. Scott & J. S. Bulak, 2011. Recovery of a temperate riverine fish assemblage from a major diesel oil spill. Freshwater Biology 56: 503–518.

    Article  Google Scholar 

  • Kuhn, M., 2014. Caret: Classification and Regression Training. R package version 6.0-21. http://CRAN.R-project.org/package=caret. Available on 21 Jan 2014.

  • Labonne, J., V. Ravigné, B. Parisi & C. Gaucherel, 2008. Linking dendritic network structures to population demogenetics: the downside of connectivity. Oikos 117: 1479–1490.

    Article  Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Article  Google Scholar 

  • Legendre, P. & D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.

    Article  Google Scholar 

  • Meade, R., 2004. Fish and invertebrate recolonization in a Missouri prairie stream after and acute pollution event. North American Journal of Fisheries Management 24: 7–19.

    Article  Google Scholar 

  • Meffe, G. K. & A. L. Sheldon, 1990. Post-defaunation recovery of fish assemblages in southeastern blackwater streams. Ecology 71: 657–667.

    Article  Google Scholar 

  • Milner, A. M., A. L. Robertson, L. E. Brown, S. H. Sønderland, M. McDermott & A. J. Veal, 2011. Evolution of a stream ecosystem in recently deglaciated terrain. Ecology 92: 1924–1935.

    Article  PubMed  Google Scholar 

  • Niemi, G. J., P. Devore, N. Detenbeck, D. Taylor, A. Lima, J. Pastor, J. D. Yount & R. J. Naiman, 1990. Overview of case studies on recovery of aquatic systems from disturbance. Environmental Management 14: 571–587.

    Article  Google Scholar 

  • Nyström, M., C. Folke & F. Moberg, 2000. Coral reef disturbance and resilience in a human-dominated environment. Trends in Ecology and Evolution 15: 413–417.

    Article  PubMed  Google Scholar 

  • Oksanen, J., F. B. Guillaume, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan. Available 23 Jan 2014.

  • Olden, J. D., N. L. Poff & K. R. Bestgen, 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River basin. Ecological Monographs 76: 25–40.

    Article  Google Scholar 

  • Peterson, J. T. & P. B. Bayley, 1993. Colonization rates of fishes in experimentally defaunated warmwater streams. Transactions of the American Fisheries Society 122: 199–207.

    Article  Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Renforth, P., W. M. Mayes, A. P. Jarvis, I. T. Burke, D. A. C. Manning & K. Gruiz, 2012. Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: the effects of gypsum dosing. Science of the Total Environment 421–422: 253–259.

    Article  PubMed  Google Scholar 

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.

    Article  Google Scholar 

  • Romme, W. H., M. S. Boyce, R. Gresswell, E. H. Merrill, G. W. Minshall, C. Whitlock & M. G. Turner, 2011. Twenty years after the 1988 Yellowstone fires: lessons about disturbance and ecosystems. Ecosystems 14: 1196–1215.

    Article  Google Scholar 

  • Sály, P., T. Erős, P. Takács, A. Specziár, I. Kiss & P. Bíró, 2009. Assemblage level monitoring of stream fishes: the relative efficiency of single vs. double pass electrofishing. Fisheries Research 99: 226–233.

    Article  Google Scholar 

  • Schiermeier, Q. & Y. Balling, 2010. Analysis lags on Hungarian sludge leak. Nature News 2010: 531.

    Google Scholar 

  • Stanley, E. H., S. M. Powers & N. R. Lottig, 2010. The evolving legacy of disturbance in stream ecology: concepts, contributions and coming challenges. Journal of the North American Benthological Society 29: 67–83.

    Article  Google Scholar 

  • Therneau, T., E. J. Atkinson & B. Ripley, 2013. rpart: Recursive Partitioning. R package version 4.1-4. http://CRAN.R-project.org/package=rpart. Available on 21 Jan 2014.

  • Turner, M. G. & V. H. Dale, 1998. Comparing large, infrequent disturbances: what we have learned? Ecosystems 1: 493–496.

    Article  Google Scholar 

  • Turner, M. G., 2010. Disturbance and landscape dynamics in a changing world. Ecology 91: 2833–2849.

    Article  PubMed  Google Scholar 

  • Vass, M., Á. Révay, T. Kucserka, K. Hubai, V. Üveges, K. Kovács & J. Padisák, 2013. Aquatic hyphomycetes as survivors and/or first colonizers after a red sludge disaster in the Torna stream, Hungary. International Review of Hydrobiology 98: 217–224.

    Article  CAS  Google Scholar 

  • Vaughn, C. C., 2012. Life history traits and abundance can predict local colonization and extinction rates of freshwater mussels. Freshwater Biology 57: 982–992.

    Article  Google Scholar 

  • Winemiller, K. O., 1992. Life-history strategies and the effectiveness of sexual selection. Oikos 63: 318–327.

    Article  Google Scholar 

  • Winemiller, K. O. & K. A. Rose, 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49: 2196–2218.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing Ecological Data. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the OTKA K104279 Grant and the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (Tibor Erős). We thank Anna Dolezsai, Árpád Ferincz, Mónika Tóth, Zoltán Vitál, and numerous other people for their help in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Erős.

Additional information

Handling editor: Judit Padisák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erős, T., Takács, P., Czeglédi, I. et al. Taxonomic- and trait-based recolonization dynamics of a riverine fish assemblage following a large-scale human-mediated disturbance: the red mud disaster in Hungary. Hydrobiologia 758, 31–45 (2015). https://doi.org/10.1007/s10750-015-2262-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2262-9

Keywords

Navigation