Skip to main content
Log in

Spatio-temporal study of phytoplankton cell viability in a eutrophic reservoir using SYTOX Green nucleic acid stain

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Despite the global importance of phytoplankton primary production, the ecological role of cell death as an important loss process in phytoplankton is poorly understood. To assess the significance of cell death in phytoplankton, we studied cell viability of dominant species in the canyon-shaped eutrophic Římov Reservoir (Czech Republic) at weekly and biweekly intervals from April to October 2011. Surface samples were taken from the lacustrine zone (near the dam, low nutrient level) and transition zone (near the river inflow, high nutrient level) of the reservoir. Moreover, samples from euphotic depth (1% of surface irradiance) were taken from the lacustrine zone. We used the membrane-impermeant nucleic acid dye SYTOX Green to examine seasonal and spatial differences in phytoplankton cell viability. Three species (diatoms Asterionella formosa, Fragilaria crotonensis, and cyanobacterium Aphanizomenon flos-aquae) were studied in detail. There was no difference in Asterionella cell viability among sampling sites. In the lacustrine zone, Fragilaria and Aphanizomenon exhibited lower viability than in the transition zone. In addition, Aphanizomenon viability was significantly lower at the euphotic depth. Nutrient levels were revealed as a factor influencing Fragilaria viability, while light availability was more important for Aphanizomenon. Our results evidenced that the importance of cell death, in particular phytoplankton taxa, varies both spatially and temporally. Moreover, our study indicates that coexisting taxa may differ in their capacity to cope with different environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agusti, S., 2004. Viability and niche segregation of Prochlorococcus and Synechococcus cells across the Central Atlantic Ocean. Aquatic Microbial Ecology 36(1): 53–59.

    Article  Google Scholar 

  • Agusti, S. & M. C. Sanchez, 2002. Cell viability in natural phytoplankton communities quantified by a membrane permeability probe. Limnology and Oceanography 47(3): 818–828.

    Article  Google Scholar 

  • Agusti, S., M. P. Satta, M. P. Mura & E. Benavent, 1998. Dissolved esterase activity as a tracer of phytoplankton lysis: evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnology and Oceanography 43(8): 1836–1849.

    CAS  Google Scholar 

  • Agusti, S., E. Alou, M. V. Hoyer, T. K. Frazer & D. E. Canfield, 2006. Cell death in lake phytoplankton communities. Freshwater Biology 51(8): 1496–1506.

    Article  CAS  Google Scholar 

  • Alonso-Laita, P. & S. Agusti, 2006. Contrasting patterns of phytoplankton viability in the subtropical NE Atlantic Ocean. Aquatic Microbial Ecology 43(1): 67–78.

    Article  Google Scholar 

  • Berges, J. A. & P. G. Falkowski, 1998. Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnology and Oceanography 43(1): 129–135.

    Article  CAS  Google Scholar 

  • Berman, T. & D. Wynne, 2005. Assessing phytoplankton lysis in Lake Kinneret. Limnology and Oceanography 50(2): 526–537.

    Article  Google Scholar 

  • Bidle, K. D. & P. G. Falkowski, 2004. Cell death in planktonic, photosynthetic microorganisms. Nature Reviews Microbiology 2(8): 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Brussaard, C. P. D. & R. Riegman, 1998. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aquatic Microbial Ecology 14(3): 271–280.

    Article  Google Scholar 

  • Brussaard, C. P. D., R. Riegman, A. A. M. Noordeloos, G. C. Cadee, H. Witte, A. J. Kop, G. Nieuwland, F. C. Vanduyl & R. P. M. Bak, 1995. Effects of grazing, sedimentation and phytoplankton cell-lysis on the structure of a coastal pelagic food-web. Marine Ecology Progress Series 123(1–3): 259–271.

    Article  Google Scholar 

  • Brussaard, C. P. D., A. A. M. Noordeloos & R. Riegman, 1997. Phytoplankton cell lysis. Phycologia 36(4): 12.

    Google Scholar 

  • Brussaard, C. P. D., X. Mari, J. D. L. Van Bleijswijk & M. J. W. Veldhuis, 2005. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics – II. Significance for the microbial community. Harmful Algae 4(5): 875–893.

    Article  Google Scholar 

  • Davey, H. M., 2011. Life, death, and in-between: meanings and methods in microbiology. Applied and Environmental Microbiology 77(16): 5571–5576.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davey, H. M. & P. Hexley, 2011. Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environmental Microbiology 13: 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438(1–3): 1–12.

    Article  CAS  Google Scholar 

  • Franklin, D. J., C. P. D. Brussaard & J. A. Berges, 2006. What is the role and nature of programmed cell death in phytoplankton ecology? European Journal of Phycology 41(1): 1–14.

    Article  Google Scholar 

  • Franklin, D. J., C. J. Choi, C. Hughes, G. Malin & J. A. Berges, 2009. Effect of dead phytoplankton cells on the apparent efficiency of photosystem II. Marine Ecology Progress Series 382: 35–40.

    Article  CAS  Google Scholar 

  • Franklin, D. J., R. L. Airs, M. Fernandes, T. G. Bell, R. J. Bongaerts, J. A. Berges & G. Malin, 2012. Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnology and Oceanography 57(1): 305–317.

    CAS  Google Scholar 

  • Garvey, M., B. Moriceau & U. Passow, 2007. Applicability of the FDA assay to determine the viability of marine phytoplankton under different environmental conditions. Marine Ecology Progress Series 352: 17–26.

    Article  Google Scholar 

  • Geider, R. J., E. H. Delucia, P. G. Falkowski, A. C. Finzi, J. P. Grime, J. Grace, T. M. Kana, J. La Roche, S. P. Long, B. A. Osborne, T. Platt, I. C. Prentice, J. A. Raven, W. H. Schlesinger, V. Smetacek, V. Stuart, S. Sathyendranath, R. B. Thomas, T. C. Vogelmann, P. Williams & F. I. Woodward, 2001. Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology 7(8): 849–882.

    Article  Google Scholar 

  • Gorokhova, E., L. Mattsson & A. M. Sundstrom, 2012. A comparison of TO-PRO-1 iodide and 5-CFDA-AM staining methods for assessing viability of planktonic algae with epifluorescence microscopy. Journal of Microbiological Methods 89(3): 216–221.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, M., K. Suzuki, H. Saito, K. Takahashi & S. Ito, 2008. Differences in cell viabilities of phytoplankton between spring and late summer in the northwest Pacific Ocean. Journal of Experimental Marine Biology and Ecology 360(2): 63–70.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35(2): 403–424.

    Article  Google Scholar 

  • Jochem, F. J., 1999. Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate. Marine Biology 135(4): 721–728.

    Article  CAS  Google Scholar 

  • Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Kerr, J. F. R., A. H. Wyllie & A. R. Currie, 1972. Apoptosis – basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26(4): 239–257.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir primary production. In Thornton, K. W., B. L. Kimmel & F. E. Paine (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 133–193.

    Google Scholar 

  • Kirchman, D. L., 1999. Oceanography – phytoplankton death in the sea. Nature 398(6725): 293–294.

    Article  CAS  Google Scholar 

  • Konopka, A., J. Kromkamp & L. R. Mur, 1987. Regulation of gas vesicle content and buoyancy in light-limited or phosphate-limited cultures of Aphanizomenon flos-aquae (Cyanophyta). Journal of Phycology 23(1): 70–78.

    Article  CAS  Google Scholar 

  • Kopáček, J. & J. Hejzlar, 1993. Semi-micro determination of total phosphorus in fresh-waters with perchloric-acid digestion. International Journal of Environmental Analytical Chemistry 53(3): 173–183.

    Article  Google Scholar 

  • Lee, D. Y. & G. Y. Rhee, 1997. Kinetics of cell death in the cyanobacterium Anabaena flos-aquae and the production of dissolved organic carbon. Journal of Phycology 33(6): 991–998.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 2243–2246.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11(2): 143–170.

    Article  Google Scholar 

  • Machado, M. D. & E. V. Soares, 2012. Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata. Applied Microbiology and Biotechnology 95(4): 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, Ambleside.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nedoma, J., A. Štrojsová, J. Vrba, J. Komárková & K. Šimek, 2003. Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environmental Microbiology 5(6): 462–472.

    Article  PubMed  CAS  Google Scholar 

  • Peperzak, L. & C. P. D. Brussaard, 2011. Flow cytometric applicability of fluorescent vitality probes on phytoplankton. Journal of Phycology 47(3): 692–702.

    Article  Google Scholar 

  • Procházková, L., 1959. Bestimmung Der Nitrate Im Wasser. Fresenius Zeitschrift Fur Analytische Chemie 167(4): 254–260.

    Article  Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at http://www.R-project.org/].

  • Reavie, E. D., A. A. Cangelosi & L. E. Allinger, 2010. Assessing ballast water treatments: evaluation of viability methods for ambient freshwater microplankton assemblages. Journal of Great Lakes Research 36(3): 540–547.

    Article  CAS  Google Scholar 

  • Roth, B. L., M. Poot, S. T. Yue & P. J. Millard, 1997. Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. Applied and Environmental Microbiology 63(6): 2421–2431.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rychtecký, P. & P. Znachor, 2011. Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir. Hydrobiologia 663(1): 175–186.

    Article  Google Scholar 

  • Saros, J. E., T. J. Michel, S. J. Interlandi & A. P. Wolfe, 2005. Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Canadian Journal of Fisheries and Aquatic Sciences 62(7): 1681–1689.

    Article  CAS  Google Scholar 

  • Segovia, M. & J. A. Berges, 2009. Inhibition of caspase-like activities prevents the appearance of reactive oxygen species and dark-induced apoptosis in the unicellular chlorophyte Dunaliella tertiolecta. Journal of Phycology 45(5): 1116–1126.

    Article  CAS  Google Scholar 

  • Sigee, D. C., A. Selwyn, P. Gallois & A. P. Dean, 2007. Patterns of cell death in freshwater colonial cyanobacteria during the late summer bloom. Phycologia 46(3): 284–292.

    Article  Google Scholar 

  • Vandonk, E. & S. S. Kilham, 1990. Temperature effects on silicon-limited and phosphorus-limited growth and competitive interactions among 3 diatoms. Journal of Phycology 26(1): 40–50.

    Article  CAS  Google Scholar 

  • Veldhuis, M. J. W. & G. W. Kraay, 2000. Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Scientia Marina 64(2): 121–134.

    Article  Google Scholar 

  • Veldhuis, M. J. W., T. L. Cucci & M. E. Sieracki, 1997. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. Journal of Phycology 33(3): 527–541.

    Article  CAS  Google Scholar 

  • Veldhuis, M. J. W., G. W. Kraay & K. R. Timmermans, 2001. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. European Journal of Phycology 36(2): 167–177.

    Article  Google Scholar 

  • Vives-Rego, J., P. Lebaron & G. Nebe-von Caron, 2000. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews 24(4): 429–448.

    Article  PubMed  CAS  Google Scholar 

  • Ye, L. L., X. L. Shi, X. D. Wu & F. X. Kong, 2011. Phytoplankton cell lysis after water bloom in a eutrophic freshwater lake Taihu (China). International Review of Hydrobiology 96(6): 709–719.

    Article  CAS  Google Scholar 

  • Zetsche, E. M. & F. J. R. Meysman, 2012. Dead or alive? Viability assessment of micro- and mesoplankton. Journal of Plankton Research 34(6): 493–509.

    Article  CAS  Google Scholar 

  • Znachor, P. & J. Nedoma, 2008. Application of the pdmpo technique in studying silica deposition in natural populations of Fragilaria crotonensis (Bacillariophyceae) at different depths in a eutrophic reservoir. Journal of Phycology 44(2): 518–525.

    Article  CAS  Google Scholar 

  • Znachor, P., V. Visocká, J. Nedoma & P. Rychtecký, 2013. Spatial heterogeneity of diatom silicification and growth in a eutrophic reservoir. Freshwater Biology 58(9): 1889–1902.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all the people who participated in field sampling and laboratory analysis. This study was supported by the Grant Agency of the Czech Republic (Grant numbers P504/11/2177, P504/11/2182) and by the Grant Agency of the University of South Bohemia in České Budějovice (Grant number 142/2010/P). English correction was made by Anton Baer. We also thank Petr Šmilauer and Terezie Rychtecká for their help with LME models and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Rychtecký.

Additional information

Handling editor: Judit Padisak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rychtecký, P., Znachor, P. & Nedoma, J. Spatio-temporal study of phytoplankton cell viability in a eutrophic reservoir using SYTOX Green nucleic acid stain. Hydrobiologia 740, 177–189 (2014). https://doi.org/10.1007/s10750-014-1952-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1952-z

Keywords

Navigation