Skip to main content
Log in

Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an effective method to analyze dead/ living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1–G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors affecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a). Moreover, the lowest mean % DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agustí S, Alou E, Hoyer M V, Frazer T K, Canfield D E. 2006. Cell death in lake phytoplankton communities. Freshwater Biol., 51 (8): 1496–1506.

    Article  Google Scholar 

  • Agustí S, Duarte C M, Vaqué D, Hein M, Gasol J M, Vidal M. 2001. Food web structure and elemental (C, N and P) fluxes in the Eastern tropical North Atlantic. Deep Sea Res. Part II, 48 (10): 2295–2321.

    Article  Google Scholar 

  • Agustí S, Sánchez M C. 2002. Cell viability in natural phytoplankton communities quantified by a membrane permeability probe. Limnol. Oceanogr., 47 (3): 818–828.

    Article  Google Scholar 

  • Agustí S, Satta M P, Mura M P, Benavent E. 1998. Dissolved esterase activity as a tracer of phytoplankton lysis: evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnol. Oceanogr., 43 (8): 1836–1849.

    Article  Google Scholar 

  • Agustí S. 2004. Viability and niche segregation of Prochlorococcus and Synechococcus cells across the central Atlantic Ocean. Aquat. Microb. Ecol., 36: 53–59.

    Article  Google Scholar 

  • Alonso-Laita P, Agustí S. 2006. Contrasting patterns of phytoplankton viability in the subtropical NE Atlantic Ocean. Aquat. Microb. Ecol., 43: 67–78.

    Article  Google Scholar 

  • Bidle K D, Falkowski P G. 2004. Cell death in planktonic, photosynthetic microorganisms. Nat. Rev. Microbiol., 2 (8): 643–655.

    Article  Google Scholar 

  • Brussaard C P D, Mari X, van Bleijswijk J D L, Veldhuis M J W. 2005. A mesocosm study of Phaeocystis globose (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae, 4 (5): 875–893.

    Article  Google Scholar 

  • Brussaard C P D, Noordeloos A A M, Riegman R. 1997. Phytoplankton cell lysis. Phycologia, 36 (4): 12.

    Google Scholar 

  • Brussaard C P D, Riegman R, Noordeloos A A M, Cadée G C, Witte H, Kop A J, Nieuwland G, van Duyl F C, Bak R P M. 1995. Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar. Ecol. Prog. Ser., 123: 259–271.

    Article  Google Scholar 

  • Brussaard C P D, Riegman R. 1998. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aquat. Microb. Ecol., 14 (3): 271–280.

    Article  Google Scholar 

  • Cao Z R, Huang B Q, Liu Y, Hong H S, Xie T G. 2005. Distribution characteristics of size-fractionated chlorophyll a in Xiamen waters. Journal of Oceanography in Taiwan Strait, 24 (4): 493–501. (in Chinese with English abstract)

    Google Scholar 

  • Cole J J, Findlay S, Pace M L. 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser., 43: 1–10.

    Article  Google Scholar 

  • Darzynkiewicz Z, Li X, Gong J. 1994. Assays of cell viability: discrimination of cells dying by apoptosis. In: Darzynkiewicz Z, Robinson J P, Crissman H A eds. Methods in Cell Biology. Academic Press, San Diego. p.15–38.

    Google Scholar 

  • Dubelaar G B J, Venekamp R R, Gerritzen P L. 2003. Handsfree counting and classification of living cells and colonies. In: 6th Congress on Marine Sciences. Havana, Cuba. 2003.

    Google Scholar 

  • Evans C, Wilson W H. 2008. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi. Limnol. Oceanogr., 53 (5): 2035–2040.

    Article  Google Scholar 

  • Falkowski P G, Barber R T, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281 (5374): 200–206.

    Article  Google Scholar 

  • Field C B, Behrenfeld M J, Randerson J T, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281 (5374): 237–240.

    Article  Google Scholar 

  • Franklin D J, Brussaard C P D, Berges J A. 2006. What is the role and nature of programmed cell death in phytoplankton ecology? Eur. J. Phycol., 41 (1): 1–14.

    Article  Google Scholar 

  • Fussmann G F, Ellner S P, Shertzer K W, Hairston N G. 2000. Crossing the Hopf bifurcation in a live predatorprey system. Science, 290 (5495): 1358–1360.

    Article  Google Scholar 

  • Garvey M, Moriceau B, Passow U. 2007. Applicability of the FDA assay to determine the viability of marine phytoplankton under different environmental conditions. Mar. Ecol. Prog. Ser., 352: 17–26.

    Article  Google Scholar 

  • Geider R J, Delucia E H, Falkowski P G, Finzi A C, Grime J P, Grace J, Kana T M, La Roche J, Long S P, Osborne B A, Platt T, Prentice I C, Raven J A, Schlesinger W H, Smetacek V, Stuart V, Sathyendranath S, Thomas R B, Vogelmann T C, Williams P, Woodward F I. 2001. Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biol., 7 (8): 849–882.

    Article  Google Scholar 

  • Hansen K, KorolefffF. 1999. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M eds. Methods of seawater analysis. Wiley-VCH, Weinheim. p.159–228.

    Chapter  Google Scholar 

  • Hayakawa M, Suzuki K, Saito H, Takahashi K, Ito S I. 2008. Differences in cell viabilities of phytoplankton between spring and late summer in the northwest Pacific Ocean. J. Exp. Mar. Biol. Ecol., 360 (2): 63–70.

    Article  Google Scholar 

  • Huang B Q, Lin X J, Hong H S. 2000. Distribution and environmental controlling of picophytoplankton in western Xiamen waters. Journal of Oceanography in Taiwan Strait, 19 (3): 329–336. (in Chinese with English abstract)

    Google Scholar 

  • Kirchman D L. 1999. Oceanography: phytoplankton death in the sea. Nature, 398 (6725): 293–294.

    Article  Google Scholar 

  • Lee D Y, Rhee G Y. 1997. Kinetics of cell death in the cyanobacterium Anabaena flos -aquae and the production of dissolved organic carbon. J. Phycol., 33 (6): 991–998.

    Article  Google Scholar 

  • Liao W J. 2010. Further characterization of metacaspase expression and activity in marine phytoplankton. University of New Jersey, New Brunswick. 77p.

    Google Scholar 

  • Llabrés M, Agustí S. 2008. Extending the cell digestion assay to quantify dead phytoplankton cells in cold and polar waters. Limnol. Oceanogr: Methods, 6 (12): 659–666.

    Article  Google Scholar 

  • Llabrés M, Agustí S. 2010. Effects of ultraviolet radiation on growth, cell death and the standing stock of Antarctic phytoplankton. Aquat. Microb. Ecol., 59: 151–160.

    Article  Google Scholar 

  • Onji M, Sawabe T, Ezura Y. 2000. An evaluation of viable staining dyes suitable for marine phytoplankton. Bull. Fac. Fish. Hokkaido Univ., 51 (3): 153–157.

    Google Scholar 

  • Peperzak L, Brussaard C P D. 2011. Flow cytometric applicability of fluorescent vitality probes on phytoplankton1. J. Phycol., 47 (3): 692–702.

    Article  Google Scholar 

  • Redfield A C. 1958. The biological control of chemical factors in the environment. Am. Sci., 46: 205–221.

    Google Scholar 

  • Rychtecký P, Znachor P, Nedoma J. 2014. Spatio-temporal study of phytoplankton cell viability in a eutrophic reservoir using SYTOX Green nucleic acid stain. Hydrobiologia, 740 (1): 177–189.

    Article  Google Scholar 

  • Smith D C, Steward G F, Long R A, Azam F. 1995. Bacterial mediattion of carbon fluxes during a diatom bloom in a mesocosm. Deep Sea Res. Part II, 42 (1): 75–97.

    Article  Google Scholar 

  • Team R D C. 2013. R Foundation for Statistical Computing. Vienna, Austria. p.482.

    Google Scholar 

  • Thyssen M, Mathieu D, Garcia N, Denis M. 2008. Short-term variation of phytoplankton assemblages in Mediterranean coastal waters recorded with an automated submerged flow cytometer. J. Plankton Res., 30 (9): 1027–1040.

    Article  Google Scholar 

  • Valiela I. 1995. Marine Ecological Processes. Springer-Verlag, New York, NY.

    Book  Google Scholar 

  • van Boekel W H M, Hansen F C, Riegman R, Bak R P M. 1992. Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial food web. Mar. Ecol. Prog. Ser., 81 (3): 269–276.

    Article  Google Scholar 

  • Veldhuis M J W, Brussaard C P D. 2006. Harmful algae and cell death. In: Granéli E, Turner J T eds. Ecology of Harmful Algae. Springer, Berlin Heidelberg. p.153–162.

    Chapter  Google Scholar 

  • Welschmeyer N A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39 (8): 1985–1992.

    Article  Google Scholar 

  • Wetzel R G. 1995. Death, detritus, and energy flow in aquatic ecosystems. Freshwater Biol., 33 (1): 83–89.

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank K. L. Liu for help with nutrient determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangqin Huang  (黄邦钦).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41330961, 41406143), the Chinese Academy of Sciences Special Pilot Program (No. XDA10020103), the SOA Ocean Research Project, China (No. 201105021-03), and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130121110031)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Liu, X., Chen, J. et al. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China. Chin. J. Ocean. Limnol. 35, 324–335 (2017). https://doi.org/10.1007/s00343-016-5270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5270-3

Keywords

Navigation