Skip to main content

Advertisement

Log in

Vulnerability of the Açaí Palm to Climate Change

  • Published:
Human Ecology Aims and scope Submit manuscript

Abstract

Açaí fruit is vital for rural food security and livelihoods in the Amazonian Estuary. Local enrichment of forests to enhance açaí palm densities and climatic warming are subjecting palms to higher temperatures, and local people have reported large falls in açaí fruit production during hot years. Here we investigate this local perception, using over 400 interviews with açaí producers. Most producers reported a fall in açaí production in hot years, due to low initial production and failure of developing fruit. There was a widespread perception that intensively enriched groves (high açaí palm densities) produce more fruit, but that fruit loss was greater in these same areas during hot years - presenting a potential management paradox. Our study provides initial evidence of the prevalence, mechanisms, and management implications of açaí fruit production loss due to climate change. Further multidisciplinary research is needed to better understand this problem, and to minimize potential socioeconomic impacts.

Resumo

O fruto do açaí é vital para a segurança alimentar e os modos de vida rurais no estuário Amazônico. O enriquecimento local de florestas para aumentar a densidade dos açaizais e o aquecimento climático estão sujeitando as palmeiras a temperaturas mais altas e levando a população local a notar grandes quedas na produção de frutos de açaí durante os anos quentes. Neste trabalho investigamos essa percepção local, usando mais de 400 entrevistas com produtores de açaí. A maioria dos produtores relatou uma queda na produção de açaí nos anos quentes devido à baixa produção inicial e à falha no desenvolvimento de frutas. Havia uma percepção generalizada de que a várzea estuarina intensamente enriquecidas (altas densidades de palmeiras de açaí) produzem mais frutos, mas essa perda de frutos foi maior nessas mesmas áreas durante os anos quentes - apresentando um potencial paradoxo de manejo. Este estudo fornece evidências iniciais da prevalência, mecanismos e implicações do manejo na redução da produção de frutos de açaí induzida pelas mudanças climáticas. Mais pesquisas multidisciplinares são necessárias para entender melhor esse problema e minimizar os possíveis impactos socioeconômicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida, O. T., S Rivero, C. M. Alvez-Valles, and Y. Dou. 2017. Percepção do impacto de eventos extremos sobre a produção pela população do estuário Amazônico. Revista Iberoamericana de Economía Ecológica 27:59–70.

    Google Scholar 

  • Angelsen, A., P. Jagger, R. Babigumira, B. Belcher, N. J. Hogarth, S. Bauch, J. Börner, C. Smith-Hall, and S. Wunder. 2014. Environmental Income and Rural Livelihoods: A Global-Comparative Analysis. World Development 64:S12–S28.

    Google Scholar 

  • Asprilla-perea, J., and J. M. Díaz-Puente. 2018. Importance of wild foods to household food security in tropical forest areas. Food Security 11:15–22.

    Google Scholar 

  • Brondízio, E. S. 2008. The Amazonian Caboclo and the Açaí Palm: Forest Farmers in the Global Market. The New York Botanical Garden Press, New York.

    Google Scholar 

  • Brondízio, E. S., A. C. B. de Lima, S. Schramski, and C. Adams. 2016. Social and health dimensions of climate change in the Amazon. Annals of Human Biology 43:405–414.

    Google Scholar 

  • Brondízio, E. S., and E. F. Moran. 2008. Human dimensions of climate change: the vulnerability of small farmers in the Amazon. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences 363:1803–1809.

    Google Scholar 

  • Burnham, K. P., D. R. Anderson, and K. Kate Huyvaert. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Page Behavioral Ecology and Sociobiology.

  • Campbell, A. J., L. G. Carvalheiro, M. M. Maués, R. Jaffé, T. C. Giannini, M. A. B. Freitas, … C. Menezes. 2018. Anthropogenic disturbance of tropical forests threatens pollination services to açaí palm in the Amazon river delta. Journal of Applied Ecology 55:1725–1736.

    Google Scholar 

  • Cattanio, J. H., A. B. Anderson, and M. S. Carvalho. 2002. Floristic composition and topographic variation in a tidal floodplain forest in the Amazon Estuary. Revista Brasileira de Botânica 25:419–430.

    Google Scholar 

  • Collucci, C. 2018. Brazil’s child and maternal mortality have increased against background of public spending cuts. BMJ 362:k3583.

    Google Scholar 

  • Condit, R., S. P. Hubbell, and R. B. Foster. 1996. Changes in tree species abundance in a Neotropical forest: impact of climate change. Journal of Tropical Ecology 12:231–256.

    Google Scholar 

  • Evert, R. F., and S. E. Eichhorn, editors. 2013. The Movement of Water and Solutes in Plants. Pages 708–727 Raven Biology of Plants. W. H. Freeman and Company Publishers, New York.

    Google Scholar 

  • Fauset, S., T. R. Baker, S. L. Lewis, T. R. Feldpausch, K. Affum-Baffoe, E. G. Foli, K. C. Hamer, and M. D. Swaine. 2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters 15:1120–1129.

    Google Scholar 

  • França, F. M., F. S. Frazão, V. Korasaki, J. Louzada, and J. Barlow. 2017. Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biological Conservation 216:115–122.

    Google Scholar 

  • Freitas, C. E. D. C., A. A. F. Rivas, C. P. Campos, I. Sant’Ana, J. R. Kahn, M. A. de A. Correa, and M. F. Catarino. 2012. The Potential Impacts of Global Climatic Changes and Dams on Amazonian Fish and Their Fisheries. Page in H. Türker, editor. New Advances and Contributions to Fish Biology. IntechOpen.

  • Freitas, M. A. B., I. C. G. Vieira, A. L. K. M. Albernaz, J. L. L. Magalhães, and A. C. Lees. 2015. Forest Ecology and Management Floristic impoverishment of Amazonian floodplain forests managed for açaí fruit production. Forest Ecology and Management 351:20–27.

    Google Scholar 

  • Garruña-Hernández, R., R. Orellana, A. Larque-Saavedra, and A. Canto. 2014. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature. PLoS ONE 9:1–9.

    Google Scholar 

  • Gomes, V. H. F., I. C. G. Vieira, R. P. Salomão, and H. ter Steege. 2019. Amazonian tree species threatened by deforestation and climate change. Nature Climate Change 9:547–553.

    Google Scholar 

  • Homma, A. K. O., O. L. Nogueira, A. J. E. A. de Menezes, J. E. U. de Carvalho, C. M. L. Nicoli, and G. B. de Matos. 2006. Açaí: Novos desafios e tendências. Amazônia: Ci & Desenv. 1:7–23.

    Google Scholar 

  • IBGE. 2018. Instituto Brasileiro de Geografia e Estatística - Produção da Extração Vegetal e da Silvicultura (PEVS) 2018. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados.

  • Junk, W. J., M. T. F. Piedade, J. Schöngart, M. Cohn-Haft, J. M. Adeney, and F. Wittmann. 2011. A classification of major naturally-occurring amazonian lowland wetlands. Wetlands 31:623–640.

    Google Scholar 

  • Junk, W. J., M. T. F. Piedade, J. Schöngart, and F. Wittmann. 2012. A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetlands Ecology and Management 20:461–475.

    Google Scholar 

  • Konsens, I., M. Ofir, and J. Igel. 1991. The effect of temperature on the production and abscission of flowers and pods in snap bean. Annals of Botany 67:391–399.

    Google Scholar 

  • Lindh, M., L. Zhang, D. Falster, O. Franklin, and Å. Brännströma. 2014. Plant diversity and drought: The role of deep roots. Ecological Modelling 290:85–93.

    Google Scholar 

  • Magrach, A., and M. J. Sanz. 2020. Environmental and social consequences of the increase in the demand for ‘superfoods’ world-wide. People and Nature 2:267–278.

    Google Scholar 

  • Marengo, J. A., L. S. Borma, D. A. Rodriguez, P. F. Pinho, W. R. Soares, and L. M. Alves. 2013. Recent Extremes of Drought and Flooding in Amazonia: Vulnerabilities and Human Adaptation. American Journal of Climate Change 2:87–96.

    Google Scholar 

  • Martius, C., H. Höfer, M. V. B. Garcia, J. Römbke, B. Förster, and W. Hanagarth. 2004. Microclimate in agroforestry systems in central Amazonia: Does canopy closure matter to soil organisms? Agroforestry Systems 60:291–304.

    Google Scholar 

  • Montanaro, G., B. Dichio, C. Xiloyannis, and A. Lang. 2012. Fruit transpiration in kiwifruit: Environmental drivers and predictive model. AoB PLANTS 2012:1–9.

    Google Scholar 

  • Murrieta, R. S. S., D. L. Dufour, and A. D. Siqueira. 1999. Food Consumption and Subsistence in Three Caboclo Populations on Marajó Island, Amazonia, Brazil. Human Ecology 27:455–475.

    Google Scholar 

  • Muscarella, R., T. Emilio, O. L. Phillips, S. L. Lewis, F. Slik, W. J. Baker, … H. Balslev. 2020. The global abundance of tree palms. Global Ecology and Biogeography:1–20.

  • Nepstad, D. C., C. R. De Carvalho, E. A. Davidson, P. H. Jipp, P. A. Lefebvre, G. H. Negreiros, … Vieira. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669.

    Google Scholar 

  • Nepstad, D., B. S. Soares-filho, F. Merry, A. Lima, P. Moutinho, J. Carter, … O. Stella. 2009. The End of Deforestation in the Brazilian Amazon. Science 326.

  • Phillips, O. L., L. E. O. C. Aragão, S. L. Lewis, J. B. Fisher, J. Lloyd, G. López-gonzález, … H. Keeling. 2009. Drought Sensitivity of the Amazon Rainforest. Science 323:1344–1347.

    Google Scholar 

  • Pinho, P. F., J. A. Marengo, and M. S. Smith. 2015. Complex socio-ecological dynamics driven by extreme events in the Amazon. Regional Environmental Change 15:643–655.

    Google Scholar 

  • Prieto, I., C. Armas, and F. I. Pugnaire. 2012. Water release through plant roots : new insights into its consequences at the plant and ecosystem level. New Phytologist 193:830–41.

    Google Scholar 

  • Queiroz, J. A. L., and S. Mochiutti. 2001. Manejo de Mínimo Impacto para Produção de Frutos em Açaizais Nativos no Estuário Amazônico. Macapá.

  • Queiroz, J. A. L., and S. Mochiutti. 2012. Guia prático de manejo de açaizais para produção de frutos. Second edition. Embrapa Amapá, Macapá.

  • R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ramos, A., M. V. Folegatti, M. L. A. Bovi, and A. V. Diotto. 2009. Distribuição Espacial Do Sistema Radicular Da Pupunheira Em Função de Lâminas de Irrigação. Irriga 14:431–440.

    Google Scholar 

  • Reddy, K. R., H. F. Hodges, and V. R. Reddy. 1992. Temperature Effects on Cotton Fruit Retention. Agronomy Journal 84:26–30.

    Google Scholar 

  • Rodrigues, D. L. 2019. Pobreza multidimensional, território e meios de vida na região da ilha das onças, município de Barcarena-PA. Universidade Federal do Pará.

  • Sage, T. L., S. Bagha, V. Lundsgaard-Nielsen, H. A. Branch, S. Sultmanis, and R. F. Sage. 2015. The effect of high temperature stress on male and female reproduction in plants. Field Crops Research 182:30–42.

    Google Scholar 

  • da Silva Cabral de Moraes, J. R., G. de Souza Rolim, L. G. Martorano, L. E. de Oliveira Aparecido, M. do S. Padilha de Oliveira, and J. T. de Farias Neto. 2020. Agrometeorological models to forecast açaí (Euterpe oleracea Mart.) yield in the Eastern Amazon. Journal of the Science of Food and Agriculture 100:1558–1569.

    Google Scholar 

  • Soeiro da Silva Dias, T., E. Barreiros de Souza, M. A. Gonçalves Jardim, P. J. Olivera Ponte de Souza, E. J. Paulino da Rocha, A. Nascimento Pinheiro, … T. Soeiro da Silva Dias Vidal. 2019. Estimativa climática sazonal da produtividade de açaí (Euterpe oleracea mart.) no Estado do Pará - cenários futuros. Revista Brasileira de Geografia Física 12:517–533.

    Google Scholar 

  • Souza, H. N. de, R. G. M. de Goede, L. Brussaard, I. M. Cardoso, E. M. G. Duarte, R. B. A. Fernandes, L. C. Gomes, and M. M. Pulleman. 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems and Environment 146:179–196.

    Google Scholar 

  • Stahl, C., B. Hérault, V. Rossi, B. Burban, C. Bréchet, and D. Bonal. 2013. Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Oecologia 173:1191–1201.

    Google Scholar 

  • Vogt, D. J., K. A. Vogt, S. J. Gmur, J. J. Scullion, A. S. Suntana, S. Daryanto, and R. Sigurðardóttir. 2016a. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts. Environmental Research 144:27–38.

    Google Scholar 

  • Vogt, N. D., M. Pinedo-vasquez, E. S. Brondízio, O. T. Almeida, and S. Rivero. 2015. Forest Transitions in Mosaic Landscapes : Smallholder’s Flexibility in Land-Resource Use Decisions and Livelihood Strategies From World War II to the Present in the Amazon Estuary. Society & Natural Resources 28:1043–1058.

    Google Scholar 

  • Vogt, N. D., M. Pinedo-Vasquez, E. S. Brondízio, F. G. Rabelo, K. Fernandes, O. T. Almeida, S. Riveiro, P. J. Deadman, and Y. Dou. 2016b. Local ecological knowledge and incremental adaptation to changing flood patterns in the Amazon delta. Sustainability Science 11:1–13.

    Google Scholar 

  • Wright, S. J. 1992. Seasonal Drought , Soil Fertility and the Species Density of Tropicai Forest Plant Communities. Trends in Ecology & Evolution 7:1–4.

    Google Scholar 

  • Wunder, S., F. Noack, and A. Angelsen. 2018. Climate, crops, and forests: a pan-tropical analysis of household income generation. Environment and Development Economics 23:279–297.

    Google Scholar 

  • Young, L. W., R. W. Wilen, and P. C. Bonham-smith. 2004. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany 55:485–495.

    Google Scholar 

Download references

Acknowledgments

We thank Joe Wright and Martijn from the Smithsonian Institute for their opinions on the physiological mechanisms driving açaí fruit loss. Thank you to Francisca Nara Moreira, Danilo Silva, Anderson Dias, and Mariano Alves-Valles for help with data collection. We thank Daniele Cunha for testing the first version of the questionnaire that resulted in its total reformulation. We thank Carolina Oliveira for help with logistics throughout the project in 2017. Thank you to Filipe França for help with statistical analyses. We also thank Claudia Ringler from IFPRI for sending their 91 pages questionnaire used in her Ethiopia project which helped us to formulate part of the one used here. We are extremely grateful to the many ribeirinhos who gave up their time to be interviewed, helped with transportation, food, and accommodation, and whose good nature and hospitality made the fieldwork a special experience.

Funding

This work was funded by CAPES-Pro-Amazônia (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; grant number 3322/2013), ANA (Agência Nacional de Águas; grant number 446309/2015–0), CNPQ-Universal (Conselho Nacional de Desenvolvimento Científico e Tecnológico; grant number 455378/2014–2); IDRC (International Development Research Centre; grant number 106711–001 and FAPESPA (Fundação Amazônia Paraense de Amparo à Pesquisa; grant number 106–2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tregidgo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregidgo, D., Campbell, A.J., Rivero, S. et al. Vulnerability of the Açaí Palm to Climate Change. Hum Ecol 48, 505–514 (2020). https://doi.org/10.1007/s10745-020-00172-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10745-020-00172-2

Keywords

Navigation