Skip to main content

Advertisement

Log in

Left ventricular hypertrophy and sudden cardiac death

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Sudden cardiac death (SCD) is among the leading causes of death worldwide, and it remains a public health problem, as it involves young subjects. Current guideline-directed risk stratification for primary prevention is largely based on left ventricular (LV) ejection fraction (LVEF), and preventive strategies such as implantation of a cardiac defibrillator (ICD) are justified only for documented low LVEF (i.e., ≤ 35%). Unfortunately, only a small percentage of primary prevention ICDs, implanted on the basis of a low LVEF, will deliver life-saving therapies on an annual basis. On the other hand, the vast majority of patients that experience SCD have LVEF > 35%, which is clamoring for better understanding of the underlying mechanisms. It is mandatory that additional variables be considered, both independently and in combination with the EF, to improve SCD risk prediction. LV hypertrophy (LVH) is a strong independent risk factor for SCD regardless of the etiology and the severity of symptoms. Concentric and eccentric LV hypertrophy, and even earlier concentric remodeling without hypertrophy, are all associated with increased risk of SCD. In this paper, we summarize the physiology and physiopathology of LVH, review the epidemiological evidence supporting the association between LVH and SCD, briefly discuss the mechanisms linking LVH with SCD, and emphasize the need to evaluate LV geometry as a potential risk stratification tool regardless of the LVEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018 Jul;15(7):387–407

Fig. 2

Reproduced with permission from Whyte G, Sheppard M, George K, Shave R, Wilson M, Prasad S, O’Hanlon R, and Sharma S. Post-mortem evidence of idiopathic left ventricular hypertrophy and idiopathic interstitial myocardial fibrosis: is exercise the cause? Br J Sports Med 2008; 42: 304–305

Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Stevens, S.M.; K. Reinier; and S.S. Chugh, Increased left ventricular mass as a predictor of sudden cardiac death: is it time to put it to the test? Circ Arrhythm Electrophysiol 2013;6(1):212–7

Similar content being viewed by others

References

  1. World Health Organization (1985) Sudden cardiac death : report of a WHO scientific group [meeting held in Geneva from 24 to 27 October 1984]. World Health Organization, Geneva

    Google Scholar 

  2. Al-Khatib SM et al (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138(13):e210–e271

    PubMed  Google Scholar 

  3. Kober L et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230

    Article  PubMed  Google Scholar 

  4. Basso C et al (2017) Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch 471(6):691–705

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stecker EC et al (2006) Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol 47(6):1161–1166

    Article  PubMed  Google Scholar 

  6. Kahan T, Bergfeldt L (2005) Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart (British Cardiac Society) 91(2):250–256

    Article  Google Scholar 

  7. Vakili BA, Okin PM, Devereux RB (2001) Prognostic implications of left ventricular hypertrophy. Am Heart J 141(3):334–341

    Article  CAS  PubMed  Google Scholar 

  8. Haider AW et al (1998) Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 32(5):1454–1459

    Article  CAS  PubMed  Google Scholar 

  9. Ferdinand KC, Maraboto C (2019) Is electrocardiography-left ventricular hypertrophy an obsolete marker for determining heart failure risk with hypertension? J Am Heart Assoc 8(8): p. e012457

  10. Lang RM et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270

    Article  PubMed  Google Scholar 

  11. Kawel-Boehm N et al (2020) Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson 22(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15(7):387–407

    Article  CAS  PubMed  Google Scholar 

  13. Triposkiadis F, Xanthopoulos A, Butler J (2019) Cardiovascular aging and heart failure: JACC review topic of the Week. J Am Coll Cardiol 74(6):804–813

    Article  PubMed  Google Scholar 

  14. Niederseer D et al (2020) Role of echocardiography in screening and evaluation of athletes. Heart

  15. D'Ascenzi F et al (2020) Female athlete's heart: sex effects on electrical and structural remodeling. Circ Cardiovasc Imaging 13(12): p. e011587

  16. Olah A et al (2016) Physiological and pathological left ventricular hypertrophy of comparable degree is associated with characteristic differences of in vivo hemodynamics. Am J Physiol Heart Circ Physiol 310(5):H587–H597

    Article  PubMed  Google Scholar 

  17. Malek LA, Bucciarelli-Ducci C (2020) Myocardial fibrosis in athletes: additional considerations. Clin Cardiol 43(11):1208

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cunningham KS, Spears DA, Care M (2019) Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic sciences research 4(3):223–240

    Article  PubMed  PubMed Central  Google Scholar 

  19. Katz AM, Rolett EL (2016) Heart failure: when form fails to follow function. Eur Heart J 37(5):449–454

    Article  PubMed  Google Scholar 

  20. Kuznetsov VA et al (2010) Asymmetric septal hypertrophy in patients with coronary artery disease. Eur J Echocardiogr 11(8):698–702

    Article  PubMed  Google Scholar 

  21. Finocchiaro G et al (2020) Diagnostic yield of hypertrophic cardiomyopathy in first-degree relatives of decedents with idiopathic left ventricular hypertrophy. Europace 22(4):632–642

    Article  PubMed  PubMed Central  Google Scholar 

  22. Whyte G et al (2008) Post-mortem evidence of idiopathic left ventricular hypertrophy and idiopathic interstitial myocardial fibrosis: is exercise the cause? Br J Sports Med 42(4):304–305

    Article  CAS  PubMed  Google Scholar 

  23. Tseng ZH et al (2018) Prospective countywide surveillance and autopsy characterization of sudden cardiac death: POST SCD study. Circulation 137(25):2689–2700

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aurigemma GP, de Simone G, Fitzgibbons TP (2013) Cardiac remodeling in obesity. Circ Cardiovasc Imaging 6(1):142–152

    Article  PubMed  Google Scholar 

  25. Kannel WB et al (1998) Sudden coronary death in women. Am Heart J 136(2):205–212

    Article  CAS  PubMed  Google Scholar 

  26. Holkeri A et al (2020) Predicting sudden cardiac death in a general population using an electrocardiographic risk score. Heart 106(6):427–433

    Article  PubMed  Google Scholar 

  27. Konety SH et al (2016) Echocardiographic predictors of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study. Circ Cardiovasc Imaging 9(8)

  28. Laukkanen JA et al (2014) Left ventricular mass and the risk of sudden cardiac death: a population-based study. J Am Heart Assoc 3(6): p. e001285

  29. Verdecchia P et al (2019) Sudden cardiac death in hypertensive patients. Hypertension 73(5):1071–1078

    Article  CAS  PubMed  Google Scholar 

  30. Okin PM et al (2013) Relationship of sudden cardiac death to new-onset atrial fibrillation in hypertensive patients with left ventricular hypertrophy. Circ Arrhythm Electrophysiol 6(2):243–251

    Article  CAS  PubMed  Google Scholar 

  31. Turakhia MP, Schiller NB, Whooley MA (2008) Prognostic significance of increased left ventricular mass index to mortality and sudden death in patients with stable coronary heart disease (from the Heart and Soul Study). Am J Cardiol 102(9):1131–1135

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liao Y et al (1995) The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA 273(20):1592–1597

    Article  CAS  PubMed  Google Scholar 

  33. Baumgartner H et al (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 38(36):2739–2791

    Article  PubMed  Google Scholar 

  34. Prejean SP et al (2021) Review of published cases of syncope and sudden death in patients with severe aortic stenosis documented by electrocardiography. Am J Cardiol

  35. Taniguchi T et al (2018) Sudden death in patients with severe aortic stenosis: observations from the current as registry. J Am Heart Assoc 7(11)

  36. Minners J et al (2020) Sudden cardiac death in asymptomatic patients with aortic stenosis. Heart 106(21):1646–1650

    Article  CAS  PubMed  Google Scholar 

  37. Spirito P et al (2000) Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 342(24):1778–1785

    Article  CAS  PubMed  Google Scholar 

  38. Miron A et al (2020) A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation 142(3):217–229

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gilstrap LG et al (2019) Epidemiology of cardiac amyloidosis-associated heart failure hospitalizations among fee-for-service medicare beneficiaries in the United States. Circ Heart Fail 12(6): p. e005407

  40. Maurer MS et al (2016) Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol 68(2):161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. John RM (2018) Arrhythmias in cardiac amyloidosis. J Innov Card Rhythm Manag 9(3):3051–3057

    Article  PubMed  PubMed Central  Google Scholar 

  42. Orini M et al (2019) Noninvasive mapping of the electrophysiological substrate in cardiac amyloidosis and its relationship to structural abnormalities. J Am Heart Assoc 8(18):e012097–e012097

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reisinger J et al (1997) Electrophysiologic abnormalities in AL (primary) amyloidosis with cardiac involvement. J Am Coll Cardiol 30(4):1046–1051

    Article  CAS  PubMed  Google Scholar 

  44. Mlcochova H et al (2006) Catheter ablation of ventricular fibrillation storm in patients with infiltrative amyloidosis of the heart. J Cardiovasc Electrophysiol 17(4):426–430

    Article  PubMed  Google Scholar 

  45. John RM, Stern DL (2020) Use of implantable electronic devices in patients with cardiac amyloidosis. Can J Cardiol 36(3):408–415

    Article  PubMed  Google Scholar 

  46. Azevedo O et al (2021) Fabry disease and the heart: a comprehensive review. Int J Mol Sci 22(9):4434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Higashi H et al (2011) Endocardial and epicardial substrates of ventricular tachycardia in a patient with Fabry disease. Heart Rhythm 8(1):133–136

    Article  PubMed  Google Scholar 

  48. Linhart A et al (2020) An expert consensus document on the management of cardiovascular manifestations of Fabry disease. Eur J Heart Fail 22(7):1076–1096

    Article  PubMed  Google Scholar 

  49. Quiñones MA et al (2000) Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials: significance of left ventricular hypertrophy. Studies of Left Ventricular Dysfunction. J Am Coll Cardiol 35(5): p. 1237–44

  50. Reinier K et al (2011) Increased left ventricular mass and decreased left ventricular systolic function have independent pathways to ventricular arrhythmogenesis in coronary artery disease. Heart Rhythm 8(8):1177–1182

    Article  PubMed  PubMed Central  Google Scholar 

  51. Phan D et al (2016) Left ventricular geometry and risk of sudden cardiac arrest in patients with severely reduced ejection fraction. J Am Heart Assoc 5(8)

  52. Aro AL et al (2017) Left-ventricular geometry and risk of sudden cardiac arrest in patients with preserved or moderately reduced left-ventricular ejection fraction. Europace 19(7):1146–1152

    PubMed  Google Scholar 

  53. Vaduganathan M et al (2018) Sudden death in heart failure with preserved ejection fraction: a competing risks analysis from the TOPCAT trial. JACC Heart Fail 6(8):653–661

    Article  PubMed  Google Scholar 

  54. Chan MM, Lam CS (2013) How do patients with heart failure with preserved ejection fraction die? Eur J Heart Fail 15(6):604–613

    Article  PubMed  Google Scholar 

  55. Vaduganathan M et al (2017) Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol 69(5):556–569

    Article  PubMed  Google Scholar 

  56. Kitai T et al (2020) Mode of death among Japanese adults with heart failure with preserved, midrange, and reduced ejection fraction. JAMA Netw Open 3(5): p. e204296

  57. Yazdanfard PD et al (2020) Non-diagnostic autopsy findings in sudden unexplained death victims. BMC Cardiovasc Disord 20(1):58

    Article  PubMed  PubMed Central  Google Scholar 

  58. Smith DL et al (2018) Pathoanatomic findings associated with duty-related cardiac death in US firefighters: a case-control study. J Am Heart Assoc 7(18): p. e009446

  59. Dennis M et al (2018) A 10-year review of sudden death during sporting activities. Heart Rhythm 15(10):1477–1483

    Article  PubMed  Google Scholar 

  60. Manfredini R et al (1996) Out-of-hospital sudden death referring to an emergency department. J Clin Epidemiol 49(8):865–868

    Article  CAS  PubMed  Google Scholar 

  61. Huynh N et al (2019) Clinical and pathologic findings of aortic dissection at autopsy: review of 336 cases over nearly 6 decades. Am Heart J 209:108–115

    Article  PubMed  Google Scholar 

  62. Adabag AS et al (2010) Etiology of sudden death in the community: results of anatomical, metabolic, and genetic evaluation. Am Heart J 159(1):33–39

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim AS et al (2016) Sudden neurologic death masquerading as out-of-hospital sudden cardiac death. Neurology 87(16):1669–1673

    Article  PubMed  PubMed Central  Google Scholar 

  64. Levy WC et al (2006) The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113(11):1424–1433

    Article  PubMed  Google Scholar 

  65. Mozaffarian D et al (2007) Prediction of mode of death in heart failure: the Seattle Heart Failure Model. Circulation 116(4):392–398

    Article  PubMed  Google Scholar 

  66. Shadman R et al (2015) A novel method to predict the proportional risk of sudden cardiac death in heart failure: derivation of the Seattle Proportional Risk Model. Heart Rhythm 12(10):2069–2077

    Article  PubMed  Google Scholar 

  67. Fukuoka R et al (2020) Prediction of sudden cardiac death in Japanese heart failure patients: international validation of the Seattle Proportional Risk Model. Europace 22(4):588–597

    Article  PubMed  Google Scholar 

  68. Levy WC, Anand IS (2014) Heart failure risk prediction models: what have we learned? JACC Heart Fail 2(5):437–439

    Article  PubMed  Google Scholar 

  69. Kuhn H, Lawrenz T, Beer G (2005) Indication for myocardial biopsy in myocarditis and dilated cardiomyopathy. Med Klin (Munich) 100(9):553–561

    Article  Google Scholar 

  70. Delgado V, Bucciarelli-Ducci C, Bax JJ (2016) Diagnostic and prognostic roles of echocardiography and cardiac magnetic resonance. J Nucl Cardiol 23(6):1399–1410

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chatterjee S et al (2014) Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am J Cardiol 114(7):1049–1052

    Article  PubMed  Google Scholar 

  72. Nadarajah R, Patel PA, Tayebjee MH (2021) Is hypertensive left ventricular hypertrophy a cause of sustained ventricular arrhythmias in humans? J Hum Hypertens

  73. Stevens SM, Reinier K, Chugh SS (2013) Increased left ventricular mass as a predictor of sudden cardiac death: is it time to put it to the test? Circ Arrhythm Electrophysiol 6(1):212–217

    Article  PubMed  PubMed Central  Google Scholar 

  74. Winslow RD, Mehta D, Fuster V (2005) Sudden cardiac death: mechanisms, therapies and challenges. Nat Clin Pract Cardiovasc Med 2(7):352–360

    Article  PubMed  Google Scholar 

  75. Messerli FH (1999) Hypertension and sudden cardiac death. Am J Hypertens 12(12 Pt 3):181s–188s

    Article  CAS  PubMed  Google Scholar 

  76. Shenasa M, Shenasa H (2017) Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol 237:60–63

    Article  PubMed  Google Scholar 

  77. Tin LL, Beevers DG, Lip GY (2002) Hypertension, left ventricular hypertrophy, and sudden death. Curr Cardiol Rep 4(6):449–457

    Article  PubMed  Google Scholar 

  78. Weber KT et al (1993) Myocardial fibrosis: role of angiotensin II and aldosterone. Basic Res Cardiol 88(Suppl 1):107–124

    CAS  PubMed  Google Scholar 

  79. Sideris DA et al (1989) Arrhythmogenic effect of high blood pressure: some observations on its mechanism. Cardiovasc Res 23(11):983–992

    Article  CAS  PubMed  Google Scholar 

  80. Stroumpoulis KI, Pantazopoulos IN, Xanthos TT (2010) Hypertrophic cardiomyopathy and sudden cardiac death. World J Cardiol 2(9):289–298

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yang KC et al (2015) Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res 116(12):1937–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rubart M, Zipes DP (2005) Mechanisms of sudden cardiac death. J Clin Invest 115(9):2305–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang L et al (2013) Phospholipase Cε hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell 153(1):216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Braz JC et al (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10(3):248–254

    Article  CAS  PubMed  Google Scholar 

  85. Newton AC, Antal CE, Steinberg SF (2016) Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond) 130(17):1499–1510

    Article  CAS  Google Scholar 

  86. Sato PY et al (2015) The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 95(2):377–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Métrich M et al (2008) Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 102(8):959–965

    Article  PubMed  Google Scholar 

  88. Morel E et al (2005) cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 97(12):1296–1304

    Article  CAS  PubMed  Google Scholar 

  89. Pereira L et al (2015) Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Proc Natl Acad Sci USA 112(13): p. 3991–6

  90. Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108(2):265–272

    Article  CAS  PubMed  Google Scholar 

  91. Troupes CD et al (2017) Role of STIM1 (Stromal Interaction Molecule 1) in hypertrophy-related contractile dysfunction. Circ Res 121(2):125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van Rooij E et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103(48):18255–18260

    Article  PubMed  PubMed Central  Google Scholar 

  93. Topkara VK, Mann DL (2011) Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther 25(2):171–182

    Article  CAS  PubMed  Google Scholar 

  94. Kakimoto Y et al (2018) Overexpression of miR-221 in sudden death with cardiac hypertrophy patients. Heliyon 4(6): p. e00639

  95. Topkara VK, Mann DL (2010) Clinical applications of miRNAs in cardiac remodeling and heart failure. Per Med 7(5):531–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang B et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491

    Article  CAS  PubMed  Google Scholar 

  97. Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103(10):1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fishman GI et al (2010) Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation 122(22):2335–2348

    Article  PubMed  PubMed Central  Google Scholar 

  99. Desai RJ et al (2020) Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA Netw Open 3(1): p. e1918962

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Triposkiadis.

Ethics declarations

Conflict of interest

G.G. No disclosures, A.D. No disclosures, AX Honoraria from Novartis, J.S. No disclosures, F.T. Research support and honoraria from Amgen, Bayer, Boehringer Ingelheim, Elpen, Lilly, Menarini, Merck, Novartis, Sanofi, Servier, Vianex and WinMedica.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giamouzis, G., Dimos, A., Xanthopoulos, A. et al. Left ventricular hypertrophy and sudden cardiac death. Heart Fail Rev 27, 711–724 (2022). https://doi.org/10.1007/s10741-021-10134-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10134-5

Keywords

Navigation