Skip to main content

Advertisement

Log in

Device-based treatment options for heart failure with preserved ejection fraction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a syndrome with an unfavorable prognosis, and the number of the patients continues to grow. Because there is no effective therapy established as a standard, including pharmacological treatments, a movement to develop and evaluate device-based therapies is an important emerging area in the treatment of HFpEF patients. Many devices have set their target to reduce the left atrial pressure or pulmonary capillary wedge pressure because they are strongly related to the symptoms and prognosis of HFpEF, but the methodology to achieve it varies based on the devices. In this review, we summarize and categorize these devices into the following: (1) interatrial shunt devices, (2) left ventricle expander, (3) electrical therapy, (4) left ventricular assist devices, and (5) mechanical circulatory support devices under development. Here, we describe the features and specifications of device-based therapies currently under development and those at more advanced stages of preclinical testing. Advantages and limitations of these technologies, with insights on their safety and feasibility for HFpEF patients, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xanthopoulos A, Triposkiadis F, Starling RC (2018) Heart failure with preserved ejection fraction: classification based upon phenotype is essential for diagnosis and treatment. Trends Cardiovasc Med 28(6):392–400. https://doi.org/10.1016/j.tcm.2018.01.001

    Article  PubMed  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147-239. https://doi.org/10.1016/j.jacc.2013.05.019

    Article  PubMed  Google Scholar 

  3. Lewis EF, Lamas GA, O’Meara E, Granger CB, Dunlap ME, McKelvie RS, Probstfield JL, Young JB, Michelson EL, Halling K, Carlsson J, Olofsson B, McMurray JJ, Yusuf S, Swedberg K, Pfeffer MA (2007) Characterization of health-related quality of life in heart failure patients with preserved versus low ejection fraction in CHARM. Eur J Heart Fail 9(1):83–91. https://doi.org/10.1016/j.ejheart.2006.10.012

    Article  PubMed  Google Scholar 

  4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37 (27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

  5. Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ (2018) Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 39(30):2780–2792. https://doi.org/10.1093/eurheartj/ehy301

    Article  CAS  PubMed  Google Scholar 

  6. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355(3):251–259. https://doi.org/10.1056/NEJMoa052256

    Article  CAS  PubMed  Google Scholar 

  7. van Deursen VM, Urso R, Laroche C, Damman K, Dahlstrom U, Tavazzi L, Maggioni AP, Voors AA (2014) Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail 16(1):103–111. https://doi.org/10.1002/ejhf.30

    Article  PubMed  Google Scholar 

  8. De Rosa R, Piscione F, Schranz D, Citro R, Iesu S, Galasso G (2017) Transcatheter implantable devices to monitoring of elevated left atrial pressures in patients with chronic heart failure. Transl Med UniSa 17:19–21

    PubMed  Google Scholar 

  9. Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138(9):861–870. https://doi.org/10.1161/circulationaha.118.034646

    Article  PubMed  PubMed Central  Google Scholar 

  10. Issa O, Peguero JG, Podesta C, Diaz D, De La Cruz J, Pirela D, Brenes JC (2017) Left atrial size and heart failure hospitalization in patients with diastolic dysfunction and preserved ejection fraction. J Cardiovasc Echogr 27(1):1–6. https://doi.org/10.4103/2211-4122.199064

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124(23):2491–2501. https://doi.org/10.1161/circulationaha.110.011031

    Article  PubMed  Google Scholar 

  12. Reddy YNV, Obokata M, Verbrugge FH, Lin G, Borlaug BA (2020) Atrial dysfunction in patients with heart failure with preserved ejection fraction and atrial fibrillation. J Am Coll Cardiol 76(9):1051–1064. https://doi.org/10.1016/j.jacc.2020.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  13. Linssen GC, Rienstra M, Jaarsma T, Voors AA, van Gelder IC, Hillege HL, van Veldhuisen DJ (2011) Clinical and prognostic effects of atrial fibrillation in heart failure patients with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 13(10):1111–1120. https://doi.org/10.1093/eurjhf/hfr066

    Article  PubMed  Google Scholar 

  14. Beltrami M, Palazzuoli A, Padeletti L, Cerbai E, Coiro S, Emdin M, Marcucci R, Morrone D, Cameli M, Savino K, Pedrinelli R, Ambrosio G (2018) The importance of integrated left atrial evaluation: from hypertension to heart failure with preserved ejection fraction. Int J Clin Pract 72 (2). https://doi.org/10.1111/ijcp.13050

  15. Wolsk E, Kaye D, Borlaug BA, Burkhoff D, Kitzman DW, Komtebedde J, Lam CSP, Ponikowski P, Shah SJ, Gustafsson F (2018) Resting and exercise haemodynamics in relation to six-minute walk test in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 20(4):715–722. https://doi.org/10.1002/ejhf.976

    Article  PubMed  Google Scholar 

  16. Dorfs S, Zeh W, Hochholzer W, Jander N, Kienzle RP, Pieske B, Neumann FJ (2014) Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur Heart J 35(44):3103–3112. https://doi.org/10.1093/eurheartj/ehu315

    Article  CAS  PubMed  Google Scholar 

  17. Burkhoff D, Maurer MS, Joseph SM, Rogers JG, Birati EY, Rame JE, Shah SJ (2015) Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC Heart Fail 3(4):275–282. https://doi.org/10.1016/j.jchf.2014.10.011

    Article  PubMed  Google Scholar 

  18. Granegger M, Dave H, Knirsch W, Thamsen B, Schweiger M, Hübler M (2019) A valveless pulsatile pump for the treatment of heart failure with preserved ejection fraction: a simulation study. Cardiovasc Eng Technol 10(1):69–79. https://doi.org/10.1007/s13239-018-00398-8

    Article  PubMed  Google Scholar 

  19. Fu M, Zhou J, Sun A, Zhang S, Zhang C, Zou Y, Fu M, Ge J (2012) Efficacy of ACE inhibitors in chronic heart failure with preserved ejection fraction–a meta analysis of 7 prospective clinical studies. Int J Cardiol 155(1):33–38. https://doi.org/10.1016/j.ijcard.2011.01.081

    Article  PubMed  Google Scholar 

  20. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, Anderson S, Donovan M, Iverson E, Staiger C, Ptaszynska A (2008) Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 359(23):2456–2467. https://doi.org/10.1056/NEJMoa0805450

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Chen Y, Feng X, Teng Z, Yuan Y, Bin J (2014) Effects of beta-blockers on heart failure with preserved ejection fraction: a meta-analysis. PLoS ONE 9(3):e90555. https://doi.org/10.1371/journal.pone.0090555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonsu KO, Arunmanakul P, Chaiyakunapruk N (2018) Pharmacological treatments for heart failure with preserved ejection fraction-a systematic review and indirect comparison. Heart Fail Rev 23(2):147–156. https://doi.org/10.1007/s10741-018-9679-y

    Article  CAS  PubMed  Google Scholar 

  23. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  24. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ, Zannad F, Zile MR, Desai AS, Claggett B, Jhund PS, Boytsov SA, Comin-Colet J, Cleland J, Düngen HD, Goncalvesova E, Katova T, Kerr Saraiva JF, Lelonek M, Merkely B, Senni M, Shah SJ, Zhou J, Rizkala AR, Gong J, Shi VC, Lefkowitz MP (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381(17):1609–1620. https://doi.org/10.1056/NEJMoa1908655

    Article  CAS  PubMed  Google Scholar 

  25. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380(4):347–357. https://doi.org/10.1056/NEJMoa1812389

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka H, Soga F, Tatsumi K, Mochizuki Y, Sano H, Toki H, Matsumoto K, Shite J, Takaoka H, Doi T, Hirata KI (2020) Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc Diabetol 19(1):6. https://doi.org/10.1186/s12933-019-0985-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burlacu A, Simion P, Nistor I, Covic A, Tinica G (2019) Novel percutaneous interventional therapies in heart failure with preserved ejection fraction: an integrative review. Heart Fail Rev 24(5):793–803. https://doi.org/10.1007/s10741-019-09787-0

    Article  PubMed  Google Scholar 

  28. Gupta A, Bailey SR (2018) Update on devices for diastolic dysfunction: options for a no option condition? Curr Cardiol Rep 20(10):85. https://doi.org/10.1007/s11886-018-1027-2

    Article  PubMed  Google Scholar 

  29. Kaye DM, Nanayakkara S (2019) Interatrial shunt device for heart failure with preserved ejection fraction. Front Cardiovasc Med 6:143. https://doi.org/10.3389/fcvm.2019.00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaye D, Shah SJ, Borlaug BA, Gustafsson F, Komtebedde J, Kubo S, Magnin C, Maurer MS, Feldman T, Burkhoff D (2014) Effects of an interatrial shunt on rest and exercise hemodynamics: results of a computer simulation in heart failure. J Card Fail 20(3):212–221. https://doi.org/10.1016/j.cardfail.2014.01.005

    Article  PubMed  Google Scholar 

  31. Søndergaard L, Reddy V, Kaye D, Malek F, Walton A, Mates M, Franzen O, Neuzil P, Ihlemann N, Gustafsson F (2014) Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. Eur J Heart Fail 16(7):796–801. https://doi.org/10.1002/ejhf.111

    Article  PubMed  Google Scholar 

  32. Hasenfuß G, Hayward C, Burkhoff D, Silvestry FE, McKenzie S, Gustafsson F, Malek F, Van der Heyden J, Lang I, Petrie MC, Cleland JG, Leon M, Kaye DM (2016) A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet 387(10025):1298–1304. https://doi.org/10.1016/s0140-6736(16)00704-2

    Article  PubMed  Google Scholar 

  33. Kaye DM, Hasenfuß G, Neuzil P, Post MC, Doughty R, Trochu JN, Kolodziej A, Westenfeld R, Penicka M, Rosenberg M, Walton A, Muller D, Walters D, Hausleiter J, Raake P, Petrie MC, Bergmann M, Jondeau G, Feldman T, Veldhuisen DJ, Ponikowski P, Silvestry FE, Burkhoff D, Hayward C (2016) One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. Circ Heart Fail 9(12):e003662. https://doi.org/10.1161/circheartfailure.116.003662

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feldman T, Mauri L, Kahwash R, Litwin S, Ricciardi MJ, van der Harst P, Penicka M, Fail PS, Kaye DM, Petrie MC, Basuray A, Hummel SL, Forde-McLean R, Nielsen CD, Lilly S, Massaro JM, Burkhoff D, Shah SJ (2018) Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [reduce elevated left atrial pressure in patients with heart failure]): a phase 2, randomized. Sham-controlled trial Circulation 137(4):364–375. https://doi.org/10.1161/circulationaha.117.032094

    Article  PubMed  Google Scholar 

  35. Wessler J, Kaye D, Gustafsson F, Petrie MC, Hasenfuβ G, Lam CSP, Borlaug BA, Komtebedde J, Feldman T, Shah SJ, Burkhoff D (2018) Impact of baseline hemodynamics on the effects of a transcatheter interatrial shunt device in heart failure with preserved ejection fraction. Circ Heart Fail 11(8):e004540. https://doi.org/10.1161/circheartfailure.117.004540

    Article  PubMed  Google Scholar 

  36. Kaye DM, Petrie MC, McKenzie S, Hasenfuβ G, Malek F, Post M, Doughty RN, Trochu JN, Gustafsson F, Lang I, Kolodziej A, Westenfeld R, Penicka M, Rosenberg M, Hausleiter J, Raake P, Jondeau G, Bergmann MW, Spelman T, Aytug H, Ponikowski P, Hayward C (2019) Impact of an interatrial shunt device on survival and heart failure hospitalization in patients with preserved ejection fraction. ESC Heart Fail 6(1):62–69. https://doi.org/10.1002/ehf2.12350

    Article  PubMed  Google Scholar 

  37. Shah SJ, Feldman T, Ricciardi MJ, Kahwash R, Lilly S, Litwin S, Nielsen CD, van der Harst P, Hoendermis E, Penicka M, Bartunek J, Fail PS, Kaye DM, Walton A, Petrie MC, Walker N, Basuray A, Yakubov S, Hummel SL, Chetcuti S, Forde-McLean R, Herrmann HC, Burkhoff D, Massaro JM, Cleland JGF, Mauri L (2018) One-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the reduce elevated left atrial pressure in patients with heart failure (REDUCE LAP-HF I) Trial: a randomized clinical trial. JAMA Cardiol 3(10):968–977. https://doi.org/10.1001/jamacardio.2018.2936

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hanff TC, Kaye DM, Hayward CS, Post MC, Malek F, Hasenfuβ G, Gustafsson F, Burkhoff D, Shah SJ, Litwin SE, Kahwash R, Hummel SL, Borlaug BA, Solomon SD, Lam CSP, Komtebedde J, Silvestry FE (2019) Assessment of predictors of left atrial volume response to a transcatheter InterAtrial Shunt Device (from the REDUCE LAP-HF Trial). Am J Cardiol 124(12):1912–1917. https://doi.org/10.1016/j.amjcard.2019.09.019

    Article  PubMed  Google Scholar 

  39. Amat-Santos IJ, Nombela-Franco L, García B, Tobar J, Rodés-Cabau J, San Román JA (2015) The V-Wave Device f for the treatment of heart failure. Initial experience in Europe. Rev Esp Cardiol (Engl Ed) 68(9):808–810. https://doi.org/10.1016/j.rec.2015.04.015

  40. Amat-Santos IJ, Bergeron S, Bernier M, Allende R, Barbosa Ribeiro H, Urena M, Pibarot P, Verheye S, Keren G, Yaacoby M, Nitzan Y, Abraham WT, Rodés-Cabau J (2015) Left atrial decompression through unidirectional left-to-right interatrial shunt for the treatment of left heart failure: first-in-man experience with the V-Wave device. EuroIntervention 10(9):1127–1131. https://doi.org/10.4244/eijy14m05_07

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rodés-Cabau J, Bernier M, Amat-Santos IJ, Ben Gal T, Nombela-Franco L, García Del Blanco B, Kerner A, Bergeron S, Del Trigo M, Pibarot P, Shkurovich S, Eigler N, Abraham WT (2018) Interatrial shunting for heart failure: early and late results from the first-in-human experience with the V-Wave System. JACC Cardiovasc Interv 11(22):2300–2310. https://doi.org/10.1016/j.jcin.2018.07.001

    Article  PubMed  Google Scholar 

  42. Del Trigo M, Bergeron S, Bernier M, Amat-Santos IJ, Puri R, Campelo-Parada F, Altisent OA, Regueiro A, Eigler N, Rozenfeld E, Pibarot P, Abraham WT, Rodés-Cabau J (2016) Unidirectional left-to-right interatrial shunting for treatment of patients with heart failure with reduced ejection fraction: a safety and proof-of-principle cohort study. Lancet 387(10025):1290–1297. https://doi.org/10.1016/s0140-6736(16)00585-7

    Article  PubMed  Google Scholar 

  43. Patel MB, Samuel BP, Girgis RE, Parlmer MA, Vettukattil JJ (2015) Implantable atrial flow regulator for severe, irreversible pulmonary arterial hypertension. EuroIntervention 11(6):706–709. https://doi.org/10.4244/eijy15m07_08

    Article  PubMed  Google Scholar 

  44. Rajeshkumar R, Pavithran S, Sivakumar K, Vettukattil JJ (2017) Atrial septostomy with a predefined diameter using a novel occlutech atrial flow regulator improves symptoms and cardiac index in patients with severe pulmonary arterial hypertension. Catheter Cardiovasc Interv 90(7):1145–1153. https://doi.org/10.1002/ccd.27233

    Article  PubMed  Google Scholar 

  45. Borggrefe M, Mann DL (2018) Cardiac contractility modulation in 2018. Circulation 138(24):2738–2740. https://doi.org/10.1161/circulationaha.118.036460

    Article  PubMed  Google Scholar 

  46. Tschöpe C, Van Linthout S, Spillmann F, Klein O, Biewener S, Remppis A, Gutterman D, Linke WA, Pieske B, Hamdani N, Roser M (2016) Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. Int J Cardiol 203:1061–1066. https://doi.org/10.1016/j.ijcard.2015.10.208

    Article  PubMed  Google Scholar 

  47. Abi-Samra F, Gutterman D (2016) Cardiac contractility modulation: a novel approach for the treatment of heart failure. Heart Fail Rev 21(6):645–660. https://doi.org/10.1007/s10741-016-9571-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borggrefe MM, Lawo T, Butter C, Schmidinger H, Lunati M, Pieske B, Misier AR, Curnis A, Böcker D, Remppis A, Kautzner J, Stühlinger M, Leclerq C, Táborsky M, Frigerio M, Parides M, Burkhoff D, Hindricks G (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29(8):1019–1028. https://doi.org/10.1093/eurheartj/ehn020

    Article  PubMed  Google Scholar 

  49. Kadish A, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N, Obel O, Weiner S, Wish M, Carson P, Ellenbogen K, Bourge R, Parides M, Chiacchierini RP, Goldsmith R, Goldstein S, Mika Y, Burkhoff D, Abraham WT (2011) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 161 (2):329–337.e321–322. https://doi.org/10.1016/j.ahj.2010.10.025

  50. Abraham WT, Kuck KH, Goldsmith RL, Lindenfeld J, Reddy VY, Carson PE, Mann DL, Saville B, Parise H, Chan R, Wiegn P, Hastings JL, Kaplan AJ, Edelmann F, Luthje L, Kahwash R, Tomassoni GF, Gutterman DD, Stagg A, Burkhoff D, Hasenfuß G (2018) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail 6(10):874–883. https://doi.org/10.1016/j.jchf.2018.04.010

    Article  PubMed  Google Scholar 

  51. Borggrefe M, Burkhoff D (2012) Clinical effects of cardiac contractility modulation (CCM) as a treatment for chronic heart failure. Eur J Heart Fail 14(7):703–712. https://doi.org/10.1093/eurjhf/hfs078

    Article  CAS  PubMed  Google Scholar 

  52. Morris DA, Gailani M, Vaz Pérez A, Blaschke F, Dietz R, Haverkamp W, Ozcelik C (2011) Left atrial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr 24(6):651–662. https://doi.org/10.1016/j.echo.2011.02.004

    Article  PubMed  Google Scholar 

  53. Maass AH, Van Gelder IC (2012) Atrial resynchronization therapy: a new concept for treatment of heart failure with preserved ejection fraction and prevention of atrial fibrillation? Eur J Heart Fail 14(3):227–229. https://doi.org/10.1093/eurjhf/hfs014

    Article  PubMed  Google Scholar 

  54. Liu S, Guan Z, Zheng X, Meng P, Wang Y, Li Y, Zhang Y, Yang J, Jia D, Ma C (2018) Impaired left atrial systolic function and inter-atrial dyssynchrony may contribute to symptoms of heart failure with preserved left ventricular ejection fraction: a comprehensive assessment by echocardiography. Int J Cardiol 257:177–181. https://doi.org/10.1016/j.ijcard.2017.12.042

    Article  PubMed  Google Scholar 

  55. Daubert C, Leclercq C, Le Breton H, Gras D, Pavin D, Pouvreau Y, Van Verooij P, Bakels N, Mabo P (1997) Permanent left atrial pacing with a specifically designed coronary sinus lead. Pacing Clin Electrophysiol 20(11):2755–2764. https://doi.org/10.1111/j.1540-8159.1997.tb05433.x

    Article  CAS  PubMed  Google Scholar 

  56. Laurent G, Eicher JC, Mathe A, Bertaux G, Barthez O, Debin R, Billard C, Philip JL, Wolf JE (2013) Permanent left atrial pacing therapy may improve symptoms in heart failure patients with preserved ejection fraction and atrial dyssynchrony: a pilot study prior to a national clinical research programme. Eur J Heart Fail 15(1):85–93. https://doi.org/10.1093/eurjhf/hfs150

    Article  PubMed  Google Scholar 

  57. Ng MM, Sica DA, Frishman WH (2011) Rheos: an implantable carotid sinus stimulation device for the nonpharmacologic treatment of resistant hypertension. Cardiol Rev 19(2):52–57. https://doi.org/10.1097/CRD.0b013e3181f87921

    Article  PubMed  Google Scholar 

  58. La Rovere MT, Pinna GD, Maestri R, Robbi E, Caporotondi A, Guazzotti G, Sleight P, Febo O (2009) Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol 53(2):193–199. https://doi.org/10.1016/j.jacc.2008.09.034

    Article  PubMed  Google Scholar 

  59. Funakoshi K, Hosokawa K, Kishi T, Ide T, Sunagawa K (2014) Striking volume intolerance is induced by mimicking arterial baroreflex failure in normal left ventricular function. J Card Fail 20(1):53–59. https://doi.org/10.1016/j.cardfail.2013.11.007

    Article  PubMed  Google Scholar 

  60. Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, Klug D, Lovett EG, Müller-Ehmsen J, Schafer JE, Senni M, Swarup V, Wachter R, Little WC (2015) Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 3(6):487–496. https://doi.org/10.1016/j.jchf.2015.02.006

    Article  PubMed  Google Scholar 

  61. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB, Naftel DC (2017) Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant 36(10):1080–1086. https://doi.org/10.1016/j.healun.2017.07.005

    Article  PubMed  Google Scholar 

  62. Topilsky Y, Pereira NL, Shah DK, Boilson B, Schirger JA, Kushwaha SS, Joyce LD, Park SJ (2011) Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail 4(3):266–275. https://doi.org/10.1161/circheartfailure.110.959288

    Article  PubMed  Google Scholar 

  63. Wynne E, Bergin JD, Ailawadi G, Kern JA, Kennedy JL (2011) Use of a left ventricular assist device in hypertrophic cardiomyopathy. J Card Surg 26(6):663–665. https://doi.org/10.1111/j.1540-8191.2011.01331.x

    Article  PubMed  Google Scholar 

  64. Muthiah K, Phan J, Robson D, Macdonald PS, Keogh AM, Kotlyar E, Granger E, Dhital K, Spratt P, Jansz P, Hayward CS (2013) Centrifugal continuous-flow left ventricular assist device in patients with hypertrophic cardiomyopathy: a case series. Asaio j 59(2):183–187. https://doi.org/10.1097/MAT.0b013e318286018d

    Article  PubMed  Google Scholar 

  65. Lund LH, Matthews J, Aaronson K (2010) Patient selection for left ventricular assist devices. Eur J Heart Fail 12(5):434–443. https://doi.org/10.1093/eurjhf/hfq006

    Article  PubMed  Google Scholar 

  66. Moscato F, Wirrmann C, Granegger M, Eskandary F, Zimpfer D, Schima H (2013) Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study. J Thorac Cardiovasc Surg 145(5):1352–1358. https://doi.org/10.1016/j.jtcvs.2012.06.057

    Article  PubMed  Google Scholar 

  67. Escher A, Choi Y, Callaghan F, Thamsen B, Kertzscher U, Schweiger M, Hübler M, Granegger M (2020) A valveless pulsatile pump for heart failure with preserved ejection fraction: hemo- and fluid dynamic feasibility. Ann Biomed Eng 48(6):1821–1836. https://doi.org/10.1007/s10439-020-02492-2

    Article  PubMed  PubMed Central  Google Scholar 

  68. Giridharan GA, Lederer C, Berthe A, Goubergrits L, Hutzenlaub J, Slaughter MS, Dowling RD, Spence PA, Koenig SC (2011) Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med Eng Phys 33(10):1193–1202. https://doi.org/10.1016/j.medengphy.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morley D, Litwak K, Ferber P, Spence P, Dowling R, Meyns B, Griffith B, Burkhoff D (2007) Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data. J Thorac Cardiovasc Surg 133(1):21–28. https://doi.org/10.1016/j.jtcvs.2006.07.037

    Article  PubMed  Google Scholar 

  70. Fukamachi K, Horvath DJ, Karimov JH, Kado Y, Miyamoto T, Kuban BD, Starling RC (2020) Left atrial assist device to treat patients with heart failure with preserved ejection fraction: initial in vitro study. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2019.12.110

    Article  PubMed  Google Scholar 

  71. Santos AB, Kraigher-Krainer E, Gupta DK, Claggett B, Zile MR, Pieske B, Voors AA, Lefkowitz M, Bransford T, Shi V, Packer M, McMurray JJ, Shah AM, Solomon SD (2014) Impaired left atrial function in heart failure with preserved ejection fraction. Eur J Heart Fail 16(10):1096–1103. https://doi.org/10.1002/ejhf.147

    Article  CAS  PubMed  Google Scholar 

  72. Persson H, Lonn E, Edner M, Baruch L, Lang CC, Morton JJ, Ostergren J, McKelvie RS (2007) Diastolic dysfunction in heart failure with preserved systolic function: need for objective evidence: results from the CHARM Echocardiographic Substudy-CHARMES. J Am Coll Cardiol 49(6):687–694. https://doi.org/10.1016/j.jacc.2006.08.062

    Article  PubMed  Google Scholar 

  73. Zeitler EP, Abraham WT (2020) Novel devices in heart failure: BAT, Atrial Shunts, and Phrenic Nerve Stimulation. JACC Heart Fail 8(4):251–264. https://doi.org/10.1016/j.jchf.2019.11.006

    Article  PubMed  Google Scholar 

  74. Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, van Heerebeek L, Hillege HL, Lam CS, Navis G, Voors AA (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18(6):588–598. https://doi.org/10.1002/ejhf.497

    Article  PubMed  Google Scholar 

  75. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134(1):73–90. https://doi.org/10.1161/circulationaha.116.021884

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Fukamachi.

Ethics declarations

Conflicts of interest

Kiyotaka Fukamachi, Jamshid H. Karimov, and Randall C. Starling are co-inventors of the LAAD. The other coauthors have nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagi, C., Miyamoto, T., Karimov, J.H. et al. Device-based treatment options for heart failure with preserved ejection fraction. Heart Fail Rev 26, 749–762 (2021). https://doi.org/10.1007/s10741-020-10067-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-10067-5

Keywords

Navigation