Skip to main content
Log in

Electrical manipulation of the failing heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Chronic heart failure with reduced (≤ 40%) ejection fraction (HFrEF) poses a significant residual mortality risk despite modern optimal medical therapy. In the last decades, we have witnessed the introduction of breakthrough cardiac implantable electronic devices (CIED) aimed at addressing sudden cardiac death and HF progression in patients with HFrEF, leading to improved survival and functional capacity. Following their introduction, implantable cardioverter defibrillators (ICD) and cardiac resynchronization therapy (CRT) have undergone substantial technological improvements and have been investigated in different settings of HFrEF, some of which yielded controversial results. In this review, we provide a comprehensive, yet pragmatic, approach to the individual key points in the electrical manipulation of the failing heart with ICD and CRT including patient selection, technological advances in the implant technique, follow-up, and long-term management. The aim of the review is to provide real-life-oriented advices to maximize the desired outcomes of CIED-based therapy of HFrEF. Accordingly, a framework to inform the decision-making process in candidates to ICD and/or CRT has been developed reflective of a critical appraisal of the most recently available evidence reappraising some domains beyond the classic views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, American Heart Association Statistics Committee and Stroke Statistics Subcommittee et al (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603

    PubMed  PubMed Central  Google Scholar 

  2. McMurray JJ, Packer M, Desai AS, PARADIGM-HF Investigators and Committees et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004

    PubMed  Google Scholar 

  3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Colvin MM, Drazner MH, Filippatos G, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride P, Peterson PN, Stevenson LW, Westlake C (2016) 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 68:1476–1488

    PubMed  Google Scholar 

  4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group; Authors/Task Force Members (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200

    PubMed  Google Scholar 

  5. Yancy CW, Jessup M, Bozkurt B et al (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 36:e137–e161

    Google Scholar 

  6. Leyva F, Nisam S, Auricchio A (2014) 20 years of cardiac resynchronization therapy. J Am Coll Cardiol 64:1047–1058

    PubMed  Google Scholar 

  7. Boriani G, Berti E, Belotti LM, RERAI (Registry of Emilia Romagna on Arrhythmia Interventions) Investigators et al (2016) Cardiac device therapy in patients with left ventricular dysfunction and heart failure: ‘real-world’ data on long-term outcomes (mortality, hospitalizations, days alive and out of hospital). Eur J Heart Fail 18:693–702

    PubMed  Google Scholar 

  8. Zacà V, Mondillo S, Gaddi R, Favilli R (2011) Profiling cardiac resynchronization therapy patients: responders, non-responders and those who cannot respond—the good, the bad and the ugly? Int J Cardiovasc Imaging 27:51–57

    PubMed  Google Scholar 

  9. Rush CJ, Campbell RT, Jhund PS, Connolly EC, Preiss D, Gardner RS, Petrie MC, McMurray JJV (2015) Falling cardiovascular mortality in heart failure with reduced ejection fraction and implications for clinical trials. JACC Heart Fail 3:603–614

    PubMed  Google Scholar 

  10. McMurray JJ, Packer M, Desai AS, PARADIGM-HF Committees Investigators et al (2014) Baseline characteristics and treatment of patients in prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Eur J Heart Fail 16:817–825

    CAS  PubMed  Google Scholar 

  11. Desai AS, McMurray JJ, Packer M et al (2015) Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J 36:1990–1997

    CAS  PubMed  Google Scholar 

  12. Okumura N, Jhund PS, Gong J, PARADIGM-HF Investigators and Committees et al (2016) Effects of sacubitril/valsartan in the PARADIGM-HF Trial (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) according to background therapy. Circ Heart Fail 9:e003212

    CAS  PubMed  Google Scholar 

  13. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G, McNulty S, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luceri RM, Ip JH, Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) Investigators (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352:225–237

    CAS  PubMed  Google Scholar 

  14. Køber L, Thune JJ, Nielsen JC, DANISH Investigators et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375:1221–1230

    PubMed  Google Scholar 

  15. Colquitt JL, Mendes D, Clegg AJ, Harris P, Cooper K, Picot J, Bryant J (2014) Implantable cardioverter defibrillators for the treatment of arrhythmias and cardiac resynchronisation therapy for the treatment of heart failure: systematic review and economic evaluation. Health Technol Assess 18:1–560

    PubMed  PubMed Central  Google Scholar 

  16. Al-Khatib SM, Stevenson WG, Ackerman MJ et al (2017) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm https://doi.org/10.1016/j.hrthm.2017.10.035

    PubMed  Google Scholar 

  17. Wu KC, Calkins H (2016) Powerlessness of a number: why left ventricular ejection fraction matters less for sudden cardiac death risk assessment. Circ Cardiovasc Imaging 9(10):e005519

    PubMed  PubMed Central  Google Scholar 

  18. van der Bijl P, Delgado V, Bax J (2017) Sudden cardiac death: the role of imaging. Int J Cardiol 237:15–18

    PubMed  Google Scholar 

  19. Ersbøll M, Valeur N, Andersen M, Mogensen UM, Vinther M, Svendsen JH, Møller JE, Kisslo J, Velazquez EJ, Hassager C, Søgaard P, Køber L (2013) Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. J Am Coll Cardiol Img 6:851–860

    Google Scholar 

  20. Jacobson A, Senior R, Cerqueira M, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J, ADMIRE-HF Investigators (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. J Am Coll Cardiol 55:2212–2221

    PubMed  Google Scholar 

  21. Yancy C, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128:e240–e327

    PubMed  Google Scholar 

  22. Arsenos P, Sideris S, Gatzoulis K (2016) Risk stratification for the primary prevention of arrhythmic sudden cardiac death in post-infarction patients. Continuing Cardiology Education 2(3):144–150

    Google Scholar 

  23. Klem I, Weinsaft J, Tristram B et al (2011) Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J Cardiovasc Magn Reson 13(Suppl 1):O100

    PubMed Central  Google Scholar 

  24. Kuruvilla S, Adenaw N, Katwal A et al (2013) Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging 7:250–258

    PubMed  PubMed Central  Google Scholar 

  25. Turakhia M, Schiller N, Whooley M (2008) Prognostic significance of increased left ventricular mass index to mortality and sudden death in patients with stable coronary heart disease (from the Heart and Soul Study). Am J Cardiol 102:1131–1135

    PubMed  PubMed Central  Google Scholar 

  26. Haugaa KH, Tilz R, Boveda S, Dobreanu D, Sciaraffia E, Mansourati J, Papiashvili G, Dagres N (2017) Implantable cardioverter defibrillator use for primary prevention in ischaemic and non-ischaemic heart disease—indications in the post-DANISH trial era: results of the European Heart Rhythm Association survey. Europace 19:660–664

    PubMed  Google Scholar 

  27. Al-Khatib SM, Fonarow GC, Joglar JA et al (2017) Primary prevention implantable cardioverter defibrillators in patients with nonischemic cardiomyopathy: a meta-analysis. JAMA Cardiol 2:685–688

    PubMed  PubMed Central  Google Scholar 

  28. Kolodziejczak M, Andreotti F, Kowalewski M, Buffon A, Ciccone MM, Parati G, Scicchitano P, Uminska JM, de Servi S, Bliden KP, Kubica J, Bortone A, Crea F, Gurbel P, Navarese EP (2017) Implantable cardioverter-defibrillators for primary prevention in patients with ischemic or nonischemic cardiomyopathy: a systematic review and meta-analysis. Ann Intern Med 167:103–111

    PubMed  Google Scholar 

  29. Elming MB, Nielsen JC, Haarbo J, Videbæk L, Korup E, Signorovitch J, Olesen LL, Hildebrandt P, Steffensen FH, Bruun NE, Eiskjær H, Brandes A, Thøgersen AM, Gustafsson F, Egstrup K, Videbæk R, Hassager C, Svendsen JH, Høfsten DE, Torp-Pedersen C, Pehrson S, Køber L, Thune JJ (2017) Age and outcomes of primary prevention implantable cardioverter-defibrillators in patients with nonischemic systolic heart failure. Circulation 136:1772–1780

    PubMed  Google Scholar 

  30. Metra M, Zacà V, Parati G, Heart Failure Study Group of the Italian Society of Cardiology et al (2011) Cardiovascular and noncardiovascular comorbidities in patients with chronic heart failure. J Cardiovasc Med (Hagerstown) 12:76–84

    Google Scholar 

  31. Barsheshet A, Moss AJ, Huang DT, McNitt S, Zareba W, Goldenberg I (2012) Applicability of a risk score for prediction of the long-term (8-year) benefit of the implantable cardioverter-defibrillator. J Am Coll Cardiol 59:2075–2079

    PubMed  Google Scholar 

  32. Marrouche NF (2017) Catheter ablation versus standard conventional treatment in patients with left ventricular dysfunction and atrial fibrillation: the CASTLE-AF trial. ESC Congress 365 https://congress365.escardio.org/SearchResults?vgnextkeyword=castle-af#.Whqhva2h2gR. Accessed 30 November 2017

  33. Peterson PN, Greenlee RT, Go AS et al (2017) Comparison of inappropriate shocks and other health outcomes between single- and dual-chamber implantable cardioverter-defibrillators for primary prevention of sudden cardiac death: results from the cardiovascular research network longitudinal study of implantable cardioverter-defibrillators. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.006937

  34. Hawkins NM, Grubisic M, Andrade JG, Huang F, Ding L, Gao M, Bashir J (2017) Long-term complications, reoperations and survival following cardioverter-defibrillator implant. Heart 104:237–243. https://doi.org/10.1136/heartjnl-2017-311638

    Article  PubMed  Google Scholar 

  35. Bardy GH, Smith WM, Hood MA, Crozier IG, Melton IC, Jordaens L, Theuns D, Park RE, Wright DJ, Connelly DT, Fynn SP, Murgatroyd FD, Sperzel J, Neuzner J, Spitzer SG, Ardashev AV, Oduro A, Boersma L, Maass AH, van Gelder IC, Wilde AA, van Dessel PF, Knops RE, Barr CS, Lupo P, Cappato R, Grace AA (2010) An entirely subcutaneous implantable cardioverter-defibrillator. N Engl J Med 363:36–44

    CAS  PubMed  Google Scholar 

  36. Gold MR, Aasbo JD, El-Chami MF et al (2017) Subcutaneous implantable cardioverter-defibrillator post-approval study: clinical characteristics and perioperative results. Heart Rhythm 14:1456–1463

    PubMed  Google Scholar 

  37. Basu-Ray I, Liu J, Jia X et al (2017) Subcutaneous versus transvenous implantable defibrillator therapy: a meta-analysis of case-control studies. J Am Coll Cardiol EP. https://doi.org/10.1016/j.jacep.2017.07.017

    PubMed  Google Scholar 

  38. Olde Nordkamp LR, Knops RE, Bardy GH et al (2012) Rationale and design of the PRAETORIAN trial: a Prospective, RAndomizEd comparison of subcuTaneOus and tRansvenous ImplANtable cardioverter-defibrillator therapy. Am Heart J 163:753–760

    PubMed  Google Scholar 

  39. Poole JE, Johnson GW, Hellkamp AS, Anderson J, Callans DJ, Raitt MH, Reddy RK, Marchlinski FE, Yee R, Guarnieri T, Talajic M, Wilber DJ, Fishbein DP, Packer DL, Mark DB, Lee KL, Bardy GH (2008) Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med 359:1009–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strickberger SA, Canby R, Cooper J et al (2017) Association of antitachycardia pacing or shocks with survival in 69,000 patients with an implantable defibrillator. J Cardiovasc Electrophysiol 28:416–422

    PubMed  Google Scholar 

  41. Cevik C, Perez-Verdia A, Nugent K (2009) Implantable cardioverter defibrillators and their role in heart failure progression. Europace 11:710–715

    PubMed  Google Scholar 

  42. Biffi M (2014) ICD programming. Indian Heart J 66:S88–S100

    PubMed  PubMed Central  Google Scholar 

  43. Sapp JL, Wells GA, Parkash R, Stevenson WG, Blier L, Sarrazin JF, Thibault B, Rivard L, Gula L, Leong-Sit P, Essebag V, Nery PB, Tung SK, Raymond JM, Sterns LD, Veenhuyzen GD, Healey JS, Redfearn D, Roux JF, Tang ASL (2016) Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med 375:111–121

    CAS  PubMed  Google Scholar 

  44. Reddy VY, Reynolds MR, Neuzil P, Richardson AW, Taborsky M, Jongnarangsin K, Kralovec S, Sediva L, Ruskin JN, Josephson ME (2007) Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med 357:2657–2665

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuck KH, Schaumann A, Eckardt L, Willems S, Ventura R, Delacrétaz E, Pitschner HF, Kautzner J, Schumacher B, Hansen PS, VTACH study group (2010) Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet 375:31–40

    PubMed  Google Scholar 

  46. Parthiban N, Esterman A, Mahajan R, Twomey DJ, Pathak RK, Lau DH, Roberts-Thomson KC, Young GD, Sanders P, Ganesan AN (2015) Remote monitoring of implantable cardioverter-defibrillators: a systematic review and meta-analysis of clinical outcomes. J Am Coll Cardiol 65:2591–2600

    PubMed  Google Scholar 

  47. Saxon LA, Hayes DL, Gilliam FR, Heidenreich PA, Day J, Seth M, Meyer TE, Jones PW, Boehmer JP (2010) Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: the ALTITUDE survival study. Circulation 122:2359–2367

    PubMed  Google Scholar 

  48. Hindricks G, Varma N, Kacet S, Lewalter T, Søgaard P, Guédon-Moreau L, Proff J, Gerds TA, Anker SD, Torp-Pedersen C (2017) Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J 38:1749–1755

    PubMed  PubMed Central  Google Scholar 

  49. Guédon-Moreau L, Kouakam C, Klug D et al (2014) Decreased delivery of inappropriate shocks achieved by remote monitoring of ICD: a substudy of the ECOST trial. J Cardiovasc Electrophysiol 25:763–770

    PubMed  Google Scholar 

  50. Spencker S, Coban N, Koch L et al (2009) Potential role of home monitoring to reduce inappropriate shocks in implantable cardioverter-defibrillator patients due to lead failure. Europace 11:483–438

    PubMed  Google Scholar 

  51. Boulé S, Ninni S, Finat L, Botcherby EJ, Kouakam C, Klug D, Marquié C, Brigadeau F, Lacroix D, Kacet S, Guédon-Moreau L (2016) Potential role of antitachycardia pacing alerts for the reduction of emergency presentations following shocks in patients with implantable cardioverter-defibrillators: implications for the implementation of remote monitoring. Europace 18:1809–1817

    PubMed  Google Scholar 

  52. Kramer DG, Trikalinos TA, Kent DM (2010) Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol 56:392–406

    PubMed  PubMed Central  Google Scholar 

  53. Linde C, Ellenbogen K, McAlister F (2012) Cardiac resynchronization therapy (CRT): clinical trials, guidelines, and target populations. Heart Rhythm 9:S3–S13

    PubMed  Google Scholar 

  54. Patel M, White R, Abbara S, Bluemke DA, Herfkens RJ, Picard M, Shaw LJ, Silver M, Stillman AE, Udelson J, American College of Radiology Appropriateness Criteria Committee, American College of Cardiology Foundation Appropriate Use Criteria Task Force (2013) 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure. J Am Coll Cardiol 61:2207–2231

    PubMed  Google Scholar 

  55. Tang H, Tang S, Zhou W (2017) A review of image-guided approaches for cardiac resynchronisation therapy. Arrhythm Electrophysiol Rev 6:69–74

    PubMed  PubMed Central  Google Scholar 

  56. Adelstein E, Saba S (2007) Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J 153:105–112

    PubMed  Google Scholar 

  57. White J, Yee R, Yuan X (2006) Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 48:1953–1960

    PubMed  Google Scholar 

  58. Murphy R, Sigurdsson G, Mulamalla S et al (2006) Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol 97:1615–1621

    PubMed  Google Scholar 

  59. Khan F, Virdee M, Palmer C et al (2012) Targeted left ventricular lead placement to guide cardiac resynchronization therapy. J Am Coll Cardiol 59:1509–1518

    PubMed  Google Scholar 

  60. Bertini M, Mele D, Malagù M, Fiorencis A, Toselli T, Casadei F, Cannizzaro T, Fragale C, Fucili A, Campagnolo E, Benea G, Ferrari R (2016) Cardiac resynchronization therapy guided by multimodality cardiac imaging. Eur J Heart Fail 18:1375–1382

    PubMed  Google Scholar 

  61. Taylor R, Umar F, Panting J, Stegemann B, Leyva F (2016) Left ventricular lead position, mechanical activation, and myocardial scar in relation to left ventricular reverse remodeling and clinical outcomes after cardiac resynchronization therapy: a feature-tracking and contrast-enhanced cardiovascular magnetic resonance study. Heart Rhythm 13:481–489

    PubMed  Google Scholar 

  62. Daoulah A, Alsheikh-Ali A, Al-Faifi S et al (2015) Cardiac resynchronization therapy in patients with postero-lateral scar by cardiac magnetic resonance: a systematic review and meta-analysis. J Electrocardiol 48:783–790

    PubMed  Google Scholar 

  63. Leyva F, Zegard A, Acquaye E, Gubran C, Taylor R, Foley PWX, Umar F, Patel K, Panting J, Marshall H, Qiu T (2017) Outcomes of cardiac resynchronization therapy with or without defibrillation in patients with nonischemic cardiomyopathy. J Am Coll Cardiol 70:1216–1227

    PubMed  Google Scholar 

  64. Tomlinson DR, Bashir Y, Betts TR, Rajappan K (2009) Accuracy of manual QRS duration assessment: its importance in patient selection for cardiac resynchronization and implantable cardioverter defibrillator therapy. Europace 11:638–642

    PubMed  Google Scholar 

  65. De Guillebon M, Thambo JB, Ploux S et al (2010) Reliability and reproducibility of QRS duration in the selection of candidates for cardiac resynchronization therapy. J Cardiovasc Electrophysiol 21:890–892

    PubMed  Google Scholar 

  66. Sipahi I, Carrigan TP, Rowland DY, Stambler BS, Fang JC (2011) Impact of QRS duration on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Arch Intern Med 171:1454–1462

    PubMed  Google Scholar 

  67. Sassone B, Gambetti S, Bertini M, Beltrami M, Mascioli G, Bressan S, Fucà G, Pacchioni F, Pedaci M, Michelotti F, Bacchi Reggiani ML, Padeletti L (2015) Relation of QRS duration to response to cardiac resynchronization therapy. Am J Cardiol 115:214–219

    PubMed  Google Scholar 

  68. Shamim W, Yousufuddin M, Cicoria M, Gibson DG, Coats AJ, Henein MY (2002) Incremental changes in QRS duration in serial ECGs over time identify high risk elderly patients with heart failure. Heart 88:47–51

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Grigioni F, Carinci V, Boriani G, Bracchetti G, Potena L, Magnani G, Bacchi-Reggiani L, Magelli C, Branzi A (2002) Accelerated QRS widening as an independent predictor of cardiac death or of the need for heart transplantation in patients with congestive heart failure. J Heart Lung Transplant 21:899–902

    PubMed  Google Scholar 

  70. Strauss DG, Selvester RH, Wagner GS (2011) Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol 107:927–934

    PubMed  Google Scholar 

  71. Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, Cannom D, Daubert JP, Eldar M, Gold MR, Goldberger JJ, Goldenberg I, Lichstein E, Pitschner H, Rashtian M, Solomon S, Viskin S, Wang P, Moss AJ, on behalf of the MADIT-CRT Investigators (2011) Effectiveness of cardiac resynchronization therapy by QRS morphology in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT). Circulation 123:1061–1072

    PubMed  Google Scholar 

  72. Gold MR, Thebault C, Linde C, Abraham WT, Gerritse B, Ghio S, St. John Sutton M, Daubert JC (2012) Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the resynchronization reverses remodelling in systolic left ventricular dysfunction (REVERSE) study. Circulation 126:822–829

    PubMed  Google Scholar 

  73. Sipahi I, Chou JC, Hyden M, Rowland DY, Simon DI, Fang JC (2012) Effect of QRS morphology on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Am Heart J 163:260–267

    PubMed  PubMed Central  Google Scholar 

  74. Ploux S, Lumens J, Whinnett Z, Montaudon M, Strom M, Ramanathan C, Derval N, Zemmoura A, Denis A, de Guillebon M, Shah A, Hocini M, Jaïs P, Ritter P, Haïssaguerre M, Wilkoff BL, Bordachar P (2013) Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: beyond QRS duration and left bundle branch block morphology. J Am Coll Cardiol 61:2435–2443

    PubMed  Google Scholar 

  75. Gage RM, Curtin AE, Burns KV, Ghosh S, Gillberg JM, Bank AJ (2017) Changes in electrical dyssynchrony by body surface mapping predict left ventricular remodeling in patients with cardiac resynchronization therapy. Heart Rhythm 14:392–399

    PubMed  Google Scholar 

  76. Auricchio A, Fantoni C, Regoli F, Carbucicchio C, Goette A, Geller C, Kloss M, Klein H (2004) Characterization of left ventricular activation in patients with heart failure and left bundle branch block. Circulation 109:1133–1139

    PubMed  Google Scholar 

  77. Leyva F, Foley PW, Chalil S et al (2011) Cardiac resynchronization therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:29

    PubMed  PubMed Central  Google Scholar 

  78. Johnson WB, Vatterott PJ, Peterson MA, Bagwe S, Underwood RD, Bank AJ, Gage RM, Ramza B, Foreman BW, Splett V, Haddad T, Gillberg JM, Ghosh S (2017) Body surface mapping using an ECG belt to characterize electrical heterogeneity for different left ventricular pacing sites during cardiac resynchronization: relationship with acute hemodynamic improvement. Heart Rhythm 14:385–391

    PubMed  Google Scholar 

  79. Leclercq C, Sadoul N, Mont L, SEPTAL CRT Study Investigators et al (2016) Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: the SEPTAL CRT study. Eur Heart J 37:473–483

    PubMed  Google Scholar 

  80. Rinaldi CA, Burri H, Thibault B, Curnis A, Rao A, Gras D, Sperzel J, Singh JP, Biffi M, Bordachar P, Leclercq C (2015) A review of multisite pacing to achieve cardiac resynchronization therapy. Europace 17:7–17

    PubMed  Google Scholar 

  81. Biffi M, Defaye P, Jaïs P, Ruffa F, Leclercq C, Gras D, Yang Z, Gerritse B, Ziacchi M, Morgan JM, ALSYNC Investigators (2018) Benefits of left ventricular endocardial pacing comparing failed implants and prior non-responders to conventional cardiac resynchronization therapy: a subanalysis from the ALSYNC study. Int J Cardiol 259:88–93

    PubMed  Google Scholar 

  82. Leyva F, Zegard A, Qiu T et al (2017) Cardiac resynchronization therapy using quadripolar versus non-quadripolar left ventricular leads programmed to biventricular pacing with single-site left ventricular pacing: impact on survival and heart failure hospitalization. J Am Heart Assoc 6(10):e007026

    PubMed  PubMed Central  Google Scholar 

  83. Umar F, Taylor RJ, Stegemann B, Marshall H, Flannigan S, Lencioni M, de Bono J, Griffith M, Leyva F (2016) Haemodynamic effects of cardiac resynchronization therapy using single-vein, three-pole, multipoint left ventricular pacing in patients with ischaemic cardiomyopathy and a left ventricular free wall scar: the MAESTRO study. Europace 18:1227–1234

    PubMed  Google Scholar 

  84. Morgan JM, Biffi M, Gellér L, ALSYNC Investigators et al (2016) ALternate Site Cardiac ResYNChronization (ALSYNC): a prospective and multicentre study of left ventricular endocardial pacing for cardiac resynchronization therapy. Eur Heart J 37:2118–2127

    PubMed  Google Scholar 

  85. Behar JM, Jackson T, Hyde E, Claridge S, Gill J, Bostock J, Sohal M, Porter B, O’Neill M, Razavi R, Niederer S, Rinaldi CA (2016) Optimized left ventricular endocardial stimulation is superior to optimized epicardial stimulation in ischemic patients with poor response to cardiac resynchronization therapy: a combined magnetic resonance imaging, electroanatomic contact mapping, and hemodynamic study to target endocardial lead placement. JACC Clin Electrophysiol 2:799–809

    PubMed  PubMed Central  Google Scholar 

  86. Reddy VY, Miller MA, Neuzil P, Søgaard P, Butter C, Seifert M, Delnoy PP, van Erven L, Schalji M, Boersma LVA, Riahi S (2017) Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT-LV study. J Am Coll Cardiol 69:2119–2129

    PubMed  Google Scholar 

  87. Kamath GS, Cotiga D, Koneru JN, Arshad A, Pierce W, Aziz EF, Mandava A, Mittal S, Steinberg JS (2009) The utility of 12-lead Holter monitoring in patients with permanent atrial fibrillation for the identification of non-responders after cardiac resynchronization therapy. J Am Coll Cardiol 53:1050–1055

    PubMed  Google Scholar 

  88. Torp-Pedersen C, Møller M, Bloch-Thomsen PE, Køber L, Sandøe E, Egstrup K, Agner E, Carlsen J, Videbæk J, Marchant B, Camm AJ (1999) Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish investigations of arrhythmia and mortality on dofetilide study group. N Engl J Med 341:857–865

    CAS  PubMed  Google Scholar 

  89. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL, Bourassa MG, Arnold JM, Buxton AE, Camm AJ, Connolly SJ, Dubuc M, Ducharme A, Guerra PG, Hohnloser SH, Lambert J, le Heuzey JY, O'Hara G, Pedersen OD, Rouleau JL, Singh BN, Stevenson LW, Stevenson WG, Thibault B, Waldo AL, Atrial Fibrillation and Congestive Heart Failure Investigators (2008) Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 358:2667–2677

    CAS  PubMed  Google Scholar 

  90. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L, Merkely B, Pokushalov E, Sanders P, Proff J, Schunkert H, Christ H, Vogt J, Bänsch D, CASTLE-AF Investigators (2018) Catheter ablation for atrial fibrillation with heart failure. N Engl J Med 378:417–427

    PubMed  Google Scholar 

  91. Gasparini M, Leclercq C, Lunati M, Landolina M, Auricchio A, Santini M, Boriani G, Lamp B, Proclemer A, Curnis A, Klersy C, Leyva F (2013) Cardiac resynchronization therapy in patients with atrial fibrillation: the CERTIFY study (Cardiac Resynchronization Therapy in Atrial Fibrillation Patients Multinational Registry). JACC Heart Fail 1:500–507

    PubMed  Google Scholar 

  92. Gasparini M, Kloppe A, Lunati M, Anselme F, Landolina M, Martinez-Ferrer JB, Proclemer A, Morani G, Biffi M, Ricci R, Rordorf R, Mangoni L, Manotta L, Grammatico A, Leyva F, Boriani G (2017) Atrioventricular junction ablation in patients with atrial fibrillation treated with cardiac resynchronization therapy: positive impact on ventricular arrhythmias, implantable cardioverter-defibrillator therapies and hospitalizations. Eur J Heart Fail. https://doi.org/10.1002/ejhf.1117

    PubMed  Google Scholar 

  93. Lakkireddy D, Di Biase L, Ryschon K et al (2012) Radiofrequency ablation of premature ventricular ectopy improves the efficacy of cardiac resynchronization therapy in nonresponders. J Am Coll Cardiol 60:1531–1539

    PubMed  Google Scholar 

  94. Mullens W, Grimm RA, Verga T, Dresing T, Starling RC, Wilkoff BL, Tang WHW (2009) Insights from a cardiac resynchronization optimization clinic as part of a heart failure disease management program. J Am Coll Cardiol 53:765–773

    PubMed  Google Scholar 

  95. Birnie D, Lemke B, Aonuma K, Krum H, Lee KLF, Gasparini M, Starling RC, Milasinovic G, Gorcsan J III, Houmsse M, Abeyratne A, Sambelashvili A, Martin DO (2013) Clinical outcomes with synchronized left ventricular pacing: analysis of the adaptive CRT trial. Heart Rhythm 10:1368–1374

    PubMed  Google Scholar 

  96. Brugada J, Delnoy PP, Brachmann J, RESPOND CRT Investigators et al (2017) Contractility sensor-guided optimization of cardiac resynchronization therapy: results from the RESPOND-CRT trial. Eur Heart J 38:730–738

    PubMed  Google Scholar 

  97. Birnie D, Hudnall H, Lemke B et al (2017) Continuous optimization of cardiac resynchronization therapy reduces atrial fibrillation in heart failure patients: results of the Adaptive Cardiac Resynchronization Therapy Trial. Hearth Rhythm 14:1820–1825

    Google Scholar 

  98. Sweeney MO, Prinzen FW (2008) Ventricular pump function and pacing: physiological and clinical integration. Circ Arrhythm Electrophysiol 1:127–139

    PubMed  Google Scholar 

  99. Strik M, van Middendorp LB, Houthuizen P, Ploux S, van Hunnik A, Kuiper M, Auricchio A, Prinzen FW (2013) Interplay of electrical wavefronts as determinant of the response to cardiac resynchronization therapy in dyssynchronous canine hearts. Circ Arrhythm Electrophysiol 6:924–931

    PubMed  Google Scholar 

  100. Thibault B, Ducharme A, Harel F, White M, O’Meara E, Guertin MC, Lavoie J, Frasure-Smith N, Dubuc M, Guerra P, Macle L, Rivard L, Roy D, Talajic M, Khairy P, for the Evaluation of Resynchronization Therapy for Heart Failure (GREATER-EARTH) Investigators (2011) Left ventricular versus simultaneous biventricular pacing in patients with heart failure and a QRS complex ≥120 milliseconds. Circulation 124:2874–2881

    PubMed  Google Scholar 

  101. Saxon LA (2011) Left ventricular versus biventricular for cardiac resynchronization therapy: comparable but not equal. Circulation 124:2803–2804

    PubMed  Google Scholar 

  102. Daubert JC, Martins R, Leclercq C (2017) Why we have to use cardiac resynchronization therapy-pacemaker more. Heart Fail Clin 13:153–164

    PubMed  Google Scholar 

  103. Lindenfeld J, Feldman AM, Saxon L, Boehmer J, Carson P, Ghali JK, Anand I, Singh S, Steinberg JS, Jaski B, DeMarco T, Mann D, Yong P, Galle E, Ecklund F, Bristow M (2007) Effects of cardiac resynchronization therapy with or without a defibrillator on survival and hospitalizations in patients with New York Heart Association class IV heart failure. Circulation 115:204–212

    PubMed  Google Scholar 

  104. Narducci ML, Biffi M, Ammendola E, Vado A, Campana A, Potenza DR, Iori M, Zanon F, Zacà V, Zoni Berisso M, Bertini M, Lissoni F, Bandini A, Malacrida M, Crea F (2017) Appropriate implantable cardioverter-defibrillator interventions in cardiac resynchronization therapy–defibrillator (CRT-D) patients undergoing device replacement: time to downgrade from CRT-D to CRT-pacemaker? Insights from real-world clinical practice in the DECODE CRT-D analysis Europace https://doi.org/10.1093/europace/eux323

    Google Scholar 

  105. Biffi M, Ziacchi M, Ricci RP (2017) Can we predict new AF occurrence in single-chamber ICD patients? Insights from an observational investigation. Int J Cardiol 230:275–280

    PubMed  Google Scholar 

  106. Botto GL, Padeletti L, Santini M et al (2009) Presence and duration of atrial fibrillation detected by continuous monitoring: crucial implications for the risk of thromboembolic events. J Cardiovasc Electrophysiol 20:241–248

    PubMed  Google Scholar 

  107. Lopes RD, Alings M, Connolly SJ, Beresh H, Granger CB, Mazuecos JB, Boriani G, Nielsen JC, Conen D, Hohnloser SH, Mairesse GH, Mabo P, Camm AJ, Healey JS (2017) Rationale and design of the Apixaban for the Reduction of Thrombo-Embolism in Patients with Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) trial. Am Heart J 189:137–145

    PubMed  Google Scholar 

  108. Kirchhof P, Blank BF, Calvert M, Camm AJ, Chlouverakis G, Diener HC, Goette A, Huening A, Lip GYH, Simantirakis E, Vardas P (2017) Probing oral anticoagulation in patients with atrial high rate episodes: rationale and design of the non-vitamin K antagonist oral anticoagulants in patients with atrial high rate episodes (NOAH-AFNET 6) trial. Am Heart J 190:12–18

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Russo RJ, Costa HS, Silva PD, Anderson JL, Arshad A, Biederman RWW, Boyle NG, Frabizzio JV, Birgersdotter-Green U, Higgins SL, Lampert R, Machado CE, Martin ET, Rivard AL, Rubenstein JC, Schaerf RHM, Schwartz JD, Shah DJ, Tomassoni GF, Tominaga GT, Tonkin AE, Uretsky S, Wolff SD (2017) Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med 376:755–764

    PubMed  Google Scholar 

  110. Bertelsen L, Petersen HH, Philbert BT, Svendsen JH, Thomsen C, Vejlstrup N (2017) Safety of magnetic resonance scanning without monitoring of patients with pacemakers. Europace 19:818–823

    PubMed  Google Scholar 

  111. Teng AE, Lustgarten DL, Vijayaraman P, Tung R, Shivkumar K, Wagner GS, Ajijola OA (2016) Usefulness of His bundle pacing to achieve electrical resynchronization in patients with complete left bundle branch block and the relation between native QRS axis, duration, and normalization. Am J Cardiol 118:527–534

    PubMed  PubMed Central  Google Scholar 

  112. Ajijola OA, Upadhyay G, Macias C, Shivkumar K, Tung R (2017) Permanent His-bundle pacing for cardiac resynchronization therapy: initial feasibility study in lieu of left ventricular lead. Heart Rhythm 14:1353–1361

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Zacà.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacà, V., Murphy, T. & Biffi, M. Electrical manipulation of the failing heart. Heart Fail Rev 23, 885–896 (2018). https://doi.org/10.1007/s10741-018-9732-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9732-x

Keywords

Navigation