Skip to main content
Log in

Molecular and clinical roles of incretin-based drugs in patients with heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors produce some beneficial and deleterious effects in diabetic patients not mediated by their glycemic lowering effects, and there is a need for better understanding of the molecular basis of these effects. They possess antioxidant and anti-inflammatory effects with some direct vasodilatory action (animal and human trial data) that may indirectly influence heart failure (HF). Unlike GLP-1R agonists, signaling for HF adverse effects was observed with two DPP-4 inhibitors, saxagliptin and alogliptin. Accordingly, these drugs should be used with caution in heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

BNP:

brain natriuretic peptide or B-type natriuretic peptide

cAMP:

cyclic adenosine monophosphate

CNS:

central nervous system

CV:

cardiovascular

DPP-4i:

dipeptidyl peptidase-4 inhibitors

EF:

ejection fraction

GIP:

gastric inhibitory polypeptide or glucose-dependent insulinotropic polypeptide

GIPR:

GIP receptor

GLP-1:

glucagon-like peptide-1

GLP-1R:

glucagon-like peptide-1 receptor

HbA1c:

glycated hemoglobin

HF:

heart failure

Hif-1:

hypoxia-inducible factor-1

HR:

heart rate

LPS:

lipopolysaccharide

LV:

left ventricular or left ventricle

LVEDP:

left ventricular end-diastolic pressure

NYHA:

New York Heart Association

RAAS:

renin-angiotensin-aldosterone system

RISK:

reperfusion injury signals activation kinase

RR:

relative risk

SDF:

stromal cell-derived factor-1

T2DM:

type 2 diabetes mellitus

TNF:

tumor necrosis factor

References

  1. Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ, on behalf of the American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology (2012) Animal models of heart failure: a scientific statement from the Am Heart Association. Circ Res 111(1):131–150

    Article  CAS  PubMed  Google Scholar 

  2. Takemoto M, Node K, Nakagami H, et al (2001). Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest Nov 15;108(10):1429–37

  3. Mann DL. (2001) Recent insights into the role of tumor necrosis factor in the failing heart. In The role of inflammatory mediators in the failing heart 2001 (pp. 3–12). Springer US

  4. Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R, Watada H (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59:1030–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ussher JR, Drucker DJ (2012) Cardiovascular biology of the incretin system. Endocr Rev 33(2):187–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phillips LK, Prins JB (2012) Update on incretin hormones. Ann N Y Acad Sci:1–20

  7. Aroor AR, Sowers JR, Jia G, et al (2014) Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. American Journal of Physiology-Heart and Circulatory Physiology. Jun 13:ajpheart-00209

  8. Selvin E, Marinopoulos S, Berkenblit G, et al (2004) Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med Sep 21;141(6):421–31

  9. Ray KK, Seshasai SR, Wijesuriya S, et al (2009) Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomized controlled trials. The Lancet. May 29;373(9677):1765–72

  10. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34

    Article  CAS  PubMed  Google Scholar 

  11. Held CM, Gerstein HC, Yusuf S, et al (2007) Glucose levels predict hospitalization for congestive heart failure in patients at high cardiovascular risk. Circulation. Mar 20;115(11):1371–5

  12. Devereux RB, Roman MJ, Paranicas M, et al (2000) Impact of diabetes on cardiac structure and function. Circulation. May 16;101(19):2271–6

  13. Van Heerebeek L, Hamdani N, Handoko ML et al (2008) Diastolic stiffness of the failing diabetic heart. Circulation 117(1):43–51

    Article  PubMed  Google Scholar 

  14. Oyama JI, Node K (2014) Incretin therapy and heart failure. Circ J 78(4):819–824

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez RA, Sanabria H, de los Santos C et al (2015) Incretins and selective renal sodium-glucose co-transporter 2 inhibitors in hypertension and coronary heart disease. World J Diabetes 6(11):1186

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pussinen PJ, Tuomisto K, Jousilahti P, et al (2007) Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol. Jun 1;27(6):1433–9

  17. Zhan JK, Tan P, Wang YJ, et al (2014) Exenatide can inhibit calcification of human VSMCs through the NF-kappaB/RANKL signaling pathway. Cardiovasc Diabetol ;13(1):153

  18. Smits MM, Muskiet MH, Tonneijck L, et al (2015) GLP-1 receptor agonist exenatide increases capillary perfusion independent of nitric oxide in healthy overweight men. Arterioscler Thromb Vasc Biol Jan 1:ATVBAHA-115

  19. Gilbert RE (2013) Endothelial loss and repair in the vascular complications of diabetes. Circ J 77:849–856

    Article  CAS  PubMed  Google Scholar 

  20. Ding L, Zhang J (2012) Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin 33:75–81

    Article  CAS  PubMed  Google Scholar 

  21. Xiao-Yun X, Zhao-Hui M, Ke C, Hong-Hui H, Yan-Hong X (2011) Glucagon- like peptide-1 improves proliferation and differentiation of en dothelial progenitor cells via upregulating VEGF generation. Med Sci Monit 17:BR35–BR41

    Article  PubMed  Google Scholar 

  22. Shiraki A, Oyama J, Komoda H, Asaka M, Komatsu A, Sakuma M, Kodama K, Sakamoto Y, Kotooka N, Hirase T, Node K (2012) The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 221:375–382

    Article  CAS  PubMed  Google Scholar 

  23. Gaspari T, Liu H, Welungoda I et al (2011) A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE−/− mouse model. Diab Vasc Dis Res 8:117–124

    Article  PubMed  Google Scholar 

  24. Dozier KC, Cureton E, Kwan R et al (2009) QS411. Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. J Surg Res 151(2):301

    Article  Google Scholar 

  25. Krasner NM, Ido Y, Ruderman NB et al (2014) Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS One 9(5):e97554

    Article  PubMed  PubMed Central  Google Scholar 

  26. Salim HM, Fukuda D, Higashikuni Y et al (2016) Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice. Vascul Pharmacol 79:16–23

    Article  CAS  PubMed  Google Scholar 

  27. Akita K, Isoda K, Shimada K, et al (2015) Dipeptidyl-peptidase-4 inhibitor, alogliptin, attenuates arterial inflammation and neointimal formation after injury in low-density lipoprotein (LDL) receptor-deficient mice. J Am Heart Assoc Mar 24;4(3):e001469

  28. Dokken BB, La Bonte LR, Davis-Gorman G et al (2011) Glucagon-like peptide-1 (GLP-1), immediately prior to reperfusion, decreases neutrophil activation and reduces myocardial infarct size in rodents. Horm Metab Res 43:300–305

    Article  CAS  PubMed  Google Scholar 

  29. Dokken BB, Hilwig WR, Teachey MK, Panchal RA, Hubner K, Allen D, Rogers DC, Kern KB (2010) Glucagon-like peptide-1 (GLP-1) attenuates post-resuscitation myocardial microcirculatory dysfunction. Resuscitation 81:755–760

    Article  CAS  PubMed  Google Scholar 

  30. Zhao T, Parikh P, Bhashyam S, et al Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts

  31. Huisamen B, Genade S, Lochner A (2008) Signalling pathways activated by glucagon-like peptide-1 (7-36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr 19:77–83

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaruba MM, Zhu W, Soonpaa MH et al (2012) Granulocyte colony-stimulating factor treatment plus dipeptidylpeptidase-IV inhibition augments myocardial regeneration in mice expressing cyclin D2 in adult cardiomyocytes. Eur Heart J 33(1):129–137

    Article  CAS  PubMed  Google Scholar 

  33. Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58:975–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54(1):146–151

    Article  CAS  PubMed  Google Scholar 

  35. Louridas GE, Lourida KG.(2017) Conceptual foundations of systems biology explaining complex cardiac diseases. InHealthcare. Feb 21 (Vol. 5, No. 1, p. 10). Multidisciplinary Digital Publishing Institute

  36. Wang J, Li Z, Chen J, Zhao H, Luo L, Chen C, Xu X, Zhang W, Gao K, Li B, Zhang J, Wang W (2013) Metabolomic identification of diagnostic plasma biomarkers in humans with chronic heart failure. Mol BioSyst 9(11):2618–2626

    Article  CAS  PubMed  Google Scholar 

  37. Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446(7134):444–448

    Article  CAS  PubMed  Google Scholar 

  38. Oka T, Morita H, Komuro I (2016) Novel molecular mechanisms and regeneration therapy for heart failure. J Mol Cell Cardiol 92:46–51

    Article  CAS  PubMed  Google Scholar 

  39. Schelbert EB, Fonarow GC, Bonow RO, Butler J, Gheorghiade M (2014) Therapeutic targets in heart failure. J Am Coll Cardiol 63(21):2188–2198

    Article  PubMed  Google Scholar 

  40. Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, Parker TG, Huang Q, Drucker DJ, Husain M (2003) Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 144(6):2242–2252

    Article  CAS  PubMed  Google Scholar 

  41. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  42. Lenski M, Kazakov A, Marx N, Böhm M, Laufs U (2011) Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 51:906–918

    Article  CAS  PubMed  Google Scholar 

  43. Nikolaidis LA, Elahi D, Shen YT et al (2005) Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 298:H2401–H2408

    Article  Google Scholar 

  44. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen YT, Shannon RP (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing induced dilated cardiomyopathy. Circulation 110:955–961

    Article  CAS  PubMed  Google Scholar 

  45. Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP (2008) Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail 1:153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, Jørgensen E, Helqvist S, Saunamäki K, Clemmensen P, Holmvang L, Thuesen L, Krusell LR, Jensen JS, Køber L, Treiman M, Holst JJ, Engstrøm T (2012) Exenatide reduces reperfusion injury in patients with ST segment elevation myocardial infarction. Eur Heart J 33:1491–1499

    Article  PubMed  Google Scholar 

  47. Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ Jr, Maher TD, Dean DA, Bailey SH, Marrone G, Benckart DH, Elahi D, Shannon RP (2007) Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol 100:824–829

    Article  CAS  PubMed  Google Scholar 

  48. Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP (2010) DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging 3:195–201

    Article  PubMed  Google Scholar 

  49. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP (2006) Glucagonlike peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12:694–699

    Article  CAS  PubMed  Google Scholar 

  50. Thrainsdottir I, Malmberg K, Olsson A, Gutniak M, Rydén L (2004) Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diab Vasc Dis Res 1:40–43

    Article  PubMed  Google Scholar 

  51. Halbirk M, Nørrelund H, Møller N, Holst JJ, Schmitz O, Nielsen R, Nielsen-Kudsk JE, Nielsen SS, Nielsen TT, Eiskjær H, Bøtker HE, Wiggers H (2010) Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol 298:H1096–H1102

    Article  CAS  PubMed  Google Scholar 

  52. Shigeta T, Aoyama M, Bando YK, Monji A, Mitsui T, Takatsu M, Cheng XW, Okumura T, Hirashiki A, Nagata K, Murohara T (2012) Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation 126:1838–1851

    Article  CAS  PubMed  Google Scholar 

  53. Bostick B, Habibi J, Ma L, et al (2014) Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism. 31;63(8):1000–11

  54. dos Santos L, Salles TA, Arruda-Junior DF, Campos LCG, Pereira AC, Barreto ALT, Antonio EL, Mansur AJ, Tucci PJF, Krieger JE, Girardi ACC (2013) Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure. Circ Heart Fail 6:1029–1038

    Article  PubMed  Google Scholar 

  55. Oe H, Nakamura K, Kihara H et al (2015) Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: results of the 3D trial. Cardiovasc Diabetol 14(1):83

    Article  PubMed  PubMed Central  Google Scholar 

  56. Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14):1317–1326

    Article  CAS  PubMed  Google Scholar 

  57. Scirica BM, Braunwald E, Raz I et al (2014) Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 130(18):1579–1588

    Article  CAS  PubMed  Google Scholar 

  58. White WB, Bakris GL, Bergenstal RM et al (2011) EXamination of cArdiovascular outcoMes with alogliptIN versus standard of carE in patients with type 2 diabetes mellitus and acute coronary syndrome (EXAMINE): a cardiovascular safety study of the dipeptidyl peptidase 4 inhibitor alogliptin in patients with type 2 diabetes with acute coronary syndrome. Am Heart J 162(4):620–626

    Article  PubMed  Google Scholar 

  59. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F, EXAMINE Investigators. (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med; 369 (14): 1327–35

  60. Zannad F, Cannon CP, Cushman WC, et al. (2015) Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. The Lancet May 23; 385 (9982): 2067 76

  61. Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med Jul 16;373(3):232–42

  62. Laakso M, Rosenstock J, Groop PH, Barnett AH, Gallwitz B, Hehnke U, Tamminen I, Patel S, von Eynatten M, Woerle HJ (2015) Treatment with the dipeptidyl peptidase-4 inhibitor linagliptin or placebo followed by glimepiride in patients with type 2 diabetes with moderate to severe renal impairment: a 52-week, randomized, double-blind clinical trial. Diabetes Care Feb 1;38(2):e15–7, 38

  63. Li L, Li S, Deng K, et al. (2016) Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies bmj Feb 17;352:i610

  64. Kim JY, Yang S, Lee JI et al (2016) Cardiovascular effect of incretin-based therapy in patients with type 2d diabetes mellitus: systematic review and meta-analysis. PloS One 11(4):e0153502

    Article  PubMed  PubMed Central  Google Scholar 

  65. Monami M, Dicembrini I, Mannucci E (2014) Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis 24:689–697

    Article  CAS  PubMed  Google Scholar 

  66. Lincoff AM, Tardif JC, Schwartz GG, et al. (2014) Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA Apr 16;311(15):1515–25. doi: 10.1001/jama.2014.3321

  67. Schnell O, Rydén L, Standl E et al (2017) Updates on cardiovascular outcome trials in diabetes. Cardiovascular Diabetology 16(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lorber D. (2013) GLP-1 receptor agonists: effects on cardiovascular risk reduction. Cardiovascular therapeutics Aug 1;31(4):238–49

  69. Kang YM and Jung CH. (2016) Cardiovascular effects of glucagon-like peptide-1 receptor agonists. Endocrinology and Metabolism Jun 1;31(2):258–74

  70. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, Maggioni AP, McMurray J, Probstfield JL, Riddle MC, Solomon SD, Tardif JC, ELIXA Investigators. (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med Dec 3;373(23):2247–57, 373

  71. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, LEADER Steering Committee., LEADER Trial Investigators. (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med Jul 28;375(4):311–22, 375

  72. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T, SUSTAIN-6 Investigators. (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med Nov 10; 375(19):1834–44, 375

  73. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N, Maggioni AP, Marso SP, Öhman P, Pagidipati NJ, Poulter N, Ramachandran A, Zinman B, Hernandez AF, EXSCEL Study Group. (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med Sep 28;377(13):1228–39, 377

  74. Ferdinand KC, Botros FT, Atisso CM, Sager PT. (2016) Cardiovascular safety for once-weekly dulaglutide in type 2 diabetes: a pre-specified meta-analysis of prospectively adjudicated cardiovascular events. Cardiovascular diabetology Dec;15(1):38

  75. Fitchett DH, Udell JA and Inzucchi SE. (2017) Heart failure outcomes in clinical trials of glucose-lowering agents in patients with diabetes. Eur J Heart Fail Jan 1;19(1):43–53, 19

  76. Filion KB, Azoulay L, Platt RW, Dahl M, Dormuth CR, Clemens KK, Hu N, Paterson JM, Targownik L, Turin TC, Udell JA, Ernst P, CNODES Investigators, (2016). A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med Mar 24;374(12):1145–54, 374

  77. Vallon V, Docherty NG (2014) Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4. Exp Physio Sep 99(9):1140–1145. https://doi.org/10.1113/expphysiol.2014.078766 Epub 2014 Aug 1

    Article  CAS  Google Scholar 

  78. Packer M. (2017) Is the way to someone’s heart through their stomach? The cardiorenal paradox of incretin-based hypoglycemic drugs in heart failure. Circ Heart Fail Oct;10(10). pii: e004551. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.117.004551

  79. Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C (2004) Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 89:3055–3061

    Article  CAS  PubMed  Google Scholar 

  80. Lovshin JA, Rajasekeran H, Lytvyn Y, et al. (2017) Dipeptidyl peptidase 4 inhibition stimulates distal tubular natriuresis and increases in circulating SDF-1α1-67 in patients with type 2 diabetes. Diabetes Care Aug;40(8):1073–1081. doi: https://doi.org/10.2337/dc17-0061. Epub 2017 May 26

Download references

Acknowledgments

We thank all members of the cardiothoracic surgery, clinical pharmacy, and the medical research departments of Hamad Medical Corporation for supporting this article.

Author information

Authors and Affiliations

Authors

Contributions

BO: writing the introduction and the pharmacological background. RK: pharmacological background and second critical revision. ASO: study design, writing the manuscript, and submission. CC: manuscript revision. AK: critical revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amr S. Omar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orabi, B., Kaddoura, R., Omar, A.S. et al. Molecular and clinical roles of incretin-based drugs in patients with heart failure. Heart Fail Rev 23, 363–376 (2018). https://doi.org/10.1007/s10741-018-9702-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9702-3

Keywords

Navigation