Skip to main content
Log in

The influence of anti-hyperglycemic drug therapy on cardiovascular and heart failure outcomes in patients with type 2 diabetes mellitus

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Patients with type 2 diabetes mellitus (DM) are at a substantially increased risk of heart failure (HF) and HF mortality. Despite the lack of evidence that tight glycemic control reduces the incidence of cardiovascular (CV) events, a growing body of evidence suggests that the choice of glucose-lowering agents may influence outcomes including HF. Thiazolidinediones are associated with a significant risk of HF. For metformin, sulphonylureas and insulin, little data is available to indicate the impact on HF. The glucagon-like peptide-1 (GLP-1) agonists, liraglutide and semaglutide, have been shown to reduce major CV events, but did not affect rates of hospitalization for HF. Clinical trials have demonstrated diverse effects of Dipeptidyl peptidase-4 (DPP-4) inhibitors on HF; saxagliptin showed an increased risk of HF admissions, alogliptin was associated with higher rates of new HF admissions, while sitagliptin had a neutral effect. The sodium-glucose cotransporter 2 (SGLT2) inhibitors, empagliflozin and canagliflozin, have been recently shown to reduce the incidence of HF and cardiovascular mortality in patients with and without a history of HF. This review will summarize key findings of the impact of glucose-lowering agents on CV safety and HF-associated outcomes, present available data on the underlying mechanisms for the benefits of the SGLT2 inhibitors on HF, and discuss strategies to improve outcomes in patients with DM and high CV risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whiting DR, Guariguata L, Weil C, Shaw JIDF (2011) Diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321. https://doi.org/10.1016/j.diabres.2011.10.029

    Article  PubMed  Google Scholar 

  2. Bell DSH (2003) Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care 26(8):2433–2441. https://doi.org/10.2337/diacare.26.8.2433

    Article  PubMed  Google Scholar 

  3. Dei Cas A, Fonarow GC, Gheorghiade M, Butler J (2015) Concomitant diabetes mellitus and heart failure. Curr Probl Cardiol 40(1):7–43. https://doi.org/10.1016/j.cpcardiol.2014.09.002

    Article  PubMed  Google Scholar 

  4. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34. https://doi.org/10.1016/0002-9149(74)90089-7

    Article  CAS  PubMed  Google Scholar 

  5. Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC (2004) Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 27(3):699–703. https://doi.org/10.2337/diacare.27.3.699

    Article  PubMed  Google Scholar 

  6. Metra M, Zacà V, Parati G, Agostoni P, Bonadies M, Ciccone M, Cas AD, Iacoviello M, Lagioia R, Lombardi C, Maio R, Magrì D, Musca G, Padeletti M, Perticone F, Pezzali N, Piepoli M, Sciacqua A, Zanolla L, Nodari S, Filardi PP, Dei Cas L, Heart Failure Study Group of the Italian Society of Cardiology (2011) Cardiovascular and noncardiovascular comorbidities in patients with chronic heart failure. J Cardiovasc Med 12(2):76–84. https://doi.org/10.2459/JCM.0b013e32834058d1

    Article  Google Scholar 

  7. Stone PH, Muller JE, Hartwell T, York BJ, Rutherford JD, Parker CB, Turi ZG, Strauss HW, Willerson JT, Robertson T, Braunwald E, Jaffe AS (1989) The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS study group. J Am Coll Cardiol 14(1):49–57. https://doi.org/10.1016/0735-1097(89)90053-3

    Article  CAS  PubMed  Google Scholar 

  8. MacDonald MR, Petrie MC, Varyani F, CHARM investigators et al (2008) Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J 29:1377–1385

    Article  PubMed  Google Scholar 

  9. Sarma S, Mentz RJ, Kwasny MJ, Fought AJ, Huffman M, Subacius H, Nodari S, Konstam M, Swedberg K, Maggioni AP, Zannad F, Bonow RO, Gheorghiade M, on behalf of the EVEREST investigators (2013) Association between diabetes mellitus and post-discharge outcomes in patients hospitalized with heart failure: findings from the EVEREST trial. Eur J Heart Fail 15(2):194–202. https://doi.org/10.1093/eurjhf/hfs153

    Article  CAS  PubMed  Google Scholar 

  10. Jia G, Whaley-Connell A, Sowers JR (2017) Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. https://doi.org/10.1007/s00125-017-4390-4.

  11. Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO, Leyva F, Proudler AJ, Coats AJS, Anker SD (2005) Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 46(6):1019–1026. https://doi.org/10.1016/j.jacc.2005.02.093

    Article  CAS  PubMed  Google Scholar 

  12. UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865

    Article  Google Scholar 

  13. Stratton IM, Adler AI, Neil HA et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15):1577–1589. https://doi.org/10.1056/NEJMoa0806470

    Article  CAS  PubMed  Google Scholar 

  15. Friedewald WT, Buse JB, Bigger JT et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559

    Article  PubMed  Google Scholar 

  16. Patel A, MacMahon S, Chalmers J et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24):2560–2572. https://doi.org/10.1056/NEJMoa0802987

    Article  CAS  PubMed  Google Scholar 

  17. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD, VADT Investigators (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360(2):129–139. https://doi.org/10.1056/NEJMoa0808431

    Article  CAS  PubMed  Google Scholar 

  18. Jarnert C, Landstedt-Hallin L, Malmberg K, Melcher A, Ohrvik J, Persson H, Rydén L (2009) A randomized trial of the impact of strict glycaemic control on myocardial diastolic function and perfusion reserve: a report from the DADD (diabetes mellitus and diastolic dysfunction) study. Eur J Heart Fail 11(1):39–47. https://doi.org/10.1093/eurjhf/hfn018

    Article  PubMed  Google Scholar 

  19. Maru S, Koch GG, Stender M, Clark D, Gibowski L, Petri H, White AD, Simpson RJ (2005) Antidiabetic drugs and heart failure risk in patients with type 2 diabetes in the U.K. primary care setting. Diabetes Care 28(1):20–26. https://doi.org/10.2337/diacare.28.1.20

    Article  CAS  PubMed  Google Scholar 

  20. Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA, Tjosvold L, Vanderloo SE, McAlister FA (2013) Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail 6(3):395–402. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000162

    Article  CAS  PubMed  Google Scholar 

  21. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  22. Giles TD, Elkayam U, Bhattacharya M, Perez A, Miller AB (2010) Comparison of pioglitazone vs glyburide in early heart failure: insights from a randomized controlled study of patients with type 2 diabetes and mild cardiac disease. Congest Hear Fail 16:111–117

    Article  CAS  Google Scholar 

  23. McAlister FA, Eurich DT, Majumdar SR, Johnson JA (2008) The risk of heart failure in patients with type 2 diabetes treated with oral agent monotherapy. Eur J Heart Fail 10(7):703–708. https://doi.org/10.1016/j.ejheart.2008.05.013

    Article  CAS  PubMed  Google Scholar 

  24. Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Jain A, Atreja A, Zimmerman RS (2009) The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: a retrospective analysis. Acta Diabetol 46(2):145–154. https://doi.org/10.1007/s00592-008-0090-3

    Article  CAS  PubMed  Google Scholar 

  25. Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A, Hughes RI, Khunti K, Wilkins MR, Majeed A, Elliott P (2009) Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ 339(1):b4731. https://doi.org/10.1136/bmj.b4731

    Article  PubMed  PubMed Central  Google Scholar 

  26. Monami M, Genovese S, Mannucci E (2013) Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes. Obes Metab 15(10):938–953. https://doi.org/10.1111/dom.12116

    Article  CAS  Google Scholar 

  27. DeFronzo RA, Cooke CR, Andres R, Faloona GR, Davis PJ (1975) The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J Clin Invest 55(4):845–855. https://doi.org/10.1172/JCI107996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nosadini R, Sambataro M, Thomaseth K, Pacini G, Cipollina MR, Brocco E, Solini A, Carraro A, Velussi M, Frigato F, Crepaldi G (1993) Role of hyperglycemia and insulin resistance in determining sodium retention in non-insulin-dependent diabetes. Kidney Int 44(1):139–146. https://doi.org/10.1038/ki.1993.224

    Article  CAS  PubMed  Google Scholar 

  29. Fuster DG, Bobulescu IA, Zhang J, Wade J, Moe OW (2007) Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Renal Physiol 292(2):F577–F585. https://doi.org/10.1152/ajprenal.00240.2006

    Article  CAS  PubMed  Google Scholar 

  30. Bubien JK (2010) Epithelial Na+ channel (ENaC), hormones, and hypertension. J Biol Chem 285(31):23527–23531. https://doi.org/10.1074/jbc.R109.025049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raskin P, Rendell M, Riddle MC, Dole JF, Freed MI, Rosenstock JA (2001) Randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 24(7):1226–1232. https://doi.org/10.2337/diacare.24.7.1226

    Article  CAS  PubMed  Google Scholar 

  32. Frye RL, August P, Brooks MM et al (2009) A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 360(24):2503–2515. https://doi.org/10.1056/NEJMoa0805796

    Article  CAS  PubMed  Google Scholar 

  33. Gerstein HC, Bosch J, Dagenais GR et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia 1. N EnglJ Med 367:319–328

    Article  CAS  Google Scholar 

  34. Marso SP, McGuire DK, Zinman B, Poulter NR, Emerson SS, Pieber TR, Pratley RE, Haahr PM, Lange M, Brown-Frandsen K, Moses A, Skibsted S, Kvist K, Buse JB, DEVOTE Study Group (2017) Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med 377(8):723–732. https://doi.org/10.1056/NEJMoa1615692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eldor R, DeFronzo RA, Abdul-Ghani M (2013) In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 36(Suppl 2):S162–S174. https://doi.org/10.2337/dcS13-2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Derosa G, Cicero AF, Ciccarelli L et al (2007) Blood pressure control and inflammatory markers in type 2 diabetic patients treated with pioglitazone or rosiglitazone and metformin. Hypertens Res 30(5):387–394. https://doi.org/10.1291/hypres.30.387

    Article  CAS  PubMed  Google Scholar 

  37. Natali A, Baldeweg S, Toschi E, Capaldo B, Barbaro D, Gastaldelli A, Yudkin JS, Ferrannini E (2004) Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care 27(6):1349–1357. https://doi.org/10.2337/diacare.27.6.1349

    Article  CAS  PubMed  Google Scholar 

  38. Nicholls SJ, Tuzcu EM, Wolski K, Bayturan O, Lavoie A, Uno K, Kupfer S, Perez A, Nesto R, Nissen SE (2011) Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (pioglitazone effect on regression of intravascular sonographic coronary obstruction prospective evaluation) study. J Am Coll Cardiol 57(2):153–159. https://doi.org/10.1016/j.jacc.2010.06.055

    Article  CAS  PubMed  Google Scholar 

  39. Davidson M, Meyer PM, Haffner S, Feinstein S, D’Agostino R, Kondos GT, Perez A, Chen Z, Mazzone T (2008) Increased high-density lipoprotein cholesterol predicts the pioglitazone-mediated reduction of carotid intima-media thickness progression in patients with type 2 diabetes mellitus. Circulation 117(16):2123–2130. https://doi.org/10.1161/CIRCULATIONAHA.107.746610

    Article  CAS  PubMed  Google Scholar 

  40. Schernthaner G (2009) Pleiotropic effects of thiazolidinediones on traditional and non-traditional atherosclerotic risk factors. Int J Clin Pract 63(6):912–929. https://doi.org/10.1111/j.1742-1241.2009.02025.x

    Article  CAS  PubMed  Google Scholar 

  41. Guan Y, Hao C, Cha DR, Rao R et al (2005) Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption. Nat Med 11(8):861–866. https://doi.org/10.1038/nm1278

    Article  CAS  PubMed  Google Scholar 

  42. Seki G, Endo Y, Suzuki M, Yamada H, Horita S, Fujita T (2012) Role of renal proximal tubule transport in thiazolidinedione-induced volume expansion. World J Nephrol 1(5):146–150. https://doi.org/10.5527/wjn.v1.i5.146

    Article  PubMed  PubMed Central  Google Scholar 

  43. Basu A, MD J, McCann F, Mukhopadhyay D, Joyner MJ, Rizza RA (2006) Effects of pioglitazone versus glipizide on body fat distribution, body water content, and hemodynamics in type 2 diabetes. Diabetes Care 29(3):510–514. https://doi.org/10.2337/diacare.29.03.06.dc05-2004

    Article  CAS  PubMed  Google Scholar 

  44. Karalliedde J, Buckingham RE (2007) Thiazolidinediones and their fluid-related adverse effects: facts, fiction and putative management strategies. Drug Saf 30(9):741–753. https://doi.org/10.2165/00002018-200730090-00002

    Article  CAS  PubMed  Google Scholar 

  45. Dormandy J, Charbonnel B, Eckland D et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): a randomised controlled trial. Lancet 366(9493):1279–1289. https://doi.org/10.1016/S0140-6736(05)67528-9

    Article  CAS  PubMed  Google Scholar 

  46. DREAM Trial Investigators, Dagenais GR, Gerstein HC, Holman R et al (2008) Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in. Diabetes Care 31:1007–1014

    Article  Google Scholar 

  47. Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, Guarino PD, Lovejoy AM, Peduzzi PN, Conwit R, Brass LM, Schwartz GG, Adams HP Jr, Berger L, Carolei A, Clark W, Coull B, Ford GA, Kleindorfer D, O’Leary JR, Parsons MW, Ringleb P, Sen S, Spence JD, Tanne D, Wang D, Winder TR, IRIS Trial Investigators (2016) Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 374(14):1321–1331. https://doi.org/10.1056/NEJMoa1506930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, le Winter M, Porte D, Semenkovich CF, Smith S, Young LH, Kahn R (2004) Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the american heart association and american diabetes association. Diabetes Care 27(1):256–263. https://doi.org/10.2337/diacare.27.1.256

    Article  CAS  PubMed  Google Scholar 

  49. Holst JJ, Vilsbøll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297(1-2):127–136. https://doi.org/10.1016/j.mce.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  50. Drucker DJ (2007) The role of gut hormones in glucose homeostasis. J Clin Invest 117(1):24–32. https://doi.org/10.1172/JCI30076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117(18):2340–2350. https://doi.org/10.1161/CIRCULATIONAHA.107.739938

    Article  CAS  PubMed  Google Scholar 

  52. Noyan-Ashraf MH, Abdul Momen M, Ban K et al (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58(4):975–983. https://doi.org/10.2337/db08-1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen YT, Shannon RP (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110(8):955–961. https://doi.org/10.1161/01.CIR.0000139339.85840.DD

    Article  CAS  PubMed  Google Scholar 

  54. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12(9):694–699. https://doi.org/10.1016/j.cardfail.2006.08.211

    Article  CAS  PubMed  Google Scholar 

  55. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, Maggioni AP, McMurray JJ, Probstfield JL, Riddle MC, Solomon SD, Tardif JC, ELIXA Investigators (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257. https://doi.org/10.1056/NEJMoa1509225

    Article  CAS  PubMed  Google Scholar 

  56. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, LEADER Steering Committee, LEADER Trial Investigators (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322. https://doi.org/10.1056/NEJMoa1603827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marso SP, Bain SC, Consoli A, SUSTAIN-6 Investigators et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844. https://doi.org/10.1056/NEJMoa1607141

    Article  CAS  PubMed  Google Scholar 

  58. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N, Maggioni AP, Marso SP, Öhman P, Pagidipati NJ, Poulter N, Ramachandran A, Zinman B, Hernandez AF, EXSCEL Study Group (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239. https://doi.org/10.1056/NEJMoa1612917

    Article  CAS  PubMed  Google Scholar 

  59. Deacon CF (2011) Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab 13(1):7–18. https://doi.org/10.1111/j.1463-1326.2010.01306.x

    Article  CAS  PubMed  Google Scholar 

  60. Mulvihill EE, Drucker DJ (2014) Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 35(6):992–1019. https://doi.org/10.1210/er.2014-1035

    Article  CAS  PubMed  Google Scholar 

  61. Zhong J, Rao X, Rajagopalan S (2013) An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 226(2):305–314. https://doi.org/10.1016/j.atherosclerosis.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  62. Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A (2012) Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ 344(1):e1369. https://doi.org/10.1136/bmj.e1369

    Article  PubMed  Google Scholar 

  63. Monami M, Lamanna C, Desideri CM, Mannucci E (2012) DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv Ther 29(1):14–25

  64. Monami M, Ahren B, Dicembrini I, Mannucci E (2013) Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 15(2):112–120. https://doi.org/10.1111/dom.12000

    Article  CAS  PubMed  Google Scholar 

  65. Tremblay AJ, Lamarche B, Deacon CF, Weisnagel SJ, Couture P (2011) Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes Metab 13:366–373

    Article  CAS  PubMed  Google Scholar 

  66. Derosa G, Maffioli P, Salvadeo SAT, Ferrari I, Ragonesi PD, Querci F, Franzetti IG, Gadaleta G, Ciccarelli L, Piccinni MN, D’Angelo A, Cicero AFG (2010) Effects of sitagliptin or metformin added to pioglitazone monotherapy in poorly controlled type 2 diabetes mellitus patients. Metabolism 59(6):887–895. https://doi.org/10.1016/j.metabol.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  67. Matsubara J, Sugiyama S, Akiyama E, Iwashita S, Kurokawa H, Ohba K, Maeda H, Fujisue K, Yamamoto E, Kaikita K, Hokimoto S, Jinnouchi H, Ogawa H (2013) Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J 77(5):1337–1344. https://doi.org/10.1253/circj.CJ-12-1168

    Article  CAS  PubMed  Google Scholar 

  68. Matheeussen V, Jungraithmayr W, De Meester I (2012) Dipeptidyl peptidase 4 as a therapeutic target in ischemia/reperfusion injury. Pharmacol Ther 136(3):267–282. https://doi.org/10.1016/j.pharmthera.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  69. Gomez N, Matheeussen V, Damoiseaux C, Tamborini A, Merveille AC, Jespers P, Michaux C, Clercx C, Meester I, Mc Entee K (2012) Effect of heart failure on dipeptidyl peptidase IV activity in plasma of dogs. J Vet Intern Med 26(4):929–934. https://doi.org/10.1111/j.1939-1676.2012.00942.x

    Article  CAS  PubMed  Google Scholar 

  70. Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP (2010) DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging 3(2):195–201. https://doi.org/10.1161/CIRCIMAGING.109.899377

    Article  PubMed  Google Scholar 

  71. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I, SAVOR-TIMI 53 Steering Committee and Investigators (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14):1317–1326. https://doi.org/10.1056/NEJMoa1307684

    Article  CAS  PubMed  Google Scholar 

  72. Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, Udell JA, Mosenzon O, Im K, Umez-Eronini AA, Pollack PS, Hirshberg B, Frederich R, Lewis BS, McGuire DK, Davidson J, Steg PG, Bhatt DL, SAVOR-TIMI 53 Steering Committee and Investigators (2014) Heart failure, saxagliptin and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 130(18):1579–1588. https://doi.org/10.1161/CIRCULATIONAHA.114.010389

    Article  CAS  PubMed  Google Scholar 

  73. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F, EXAMINE Investigators (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369(14):1327–1335. https://doi.org/10.1056/NEJMoa1305889

    Article  CAS  PubMed  Google Scholar 

  74. Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Lam H, White WB (2015) Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 385(9982):2067–2076. https://doi.org/10.1016/S0140-6736(14)62225-X

    Article  CAS  PubMed  Google Scholar 

  75. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, Lachin JM, McGuire DK, Pencina MJ, Standl E, Stein PP, Suryawanshi S, van de Werf F, Peterson ED, Holman RR, TECOS Study Group (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. TECOS trial. N Engl J Med 373(3):232–242. https://doi.org/10.1056/NEJMoa1501352

    Article  CAS  PubMed  Google Scholar 

  76. McGuire DK, Van de Werf F, Armstrong PW, Standl E, Koglin J, Green JB, Bethel MA, Cornel JH, Lopes RD, Halvorsen S, Ambrosio G, Buse JB, Josse RG, Lachin JM, Pencina MJ, Garg J, Lokhnygina Y, Holman RR, Peterson ED, for the Trial Evaluating Cardiovascular Outcomes With Sitagliptin (TECOS) Study Group (2016) Association between sitagliptin use and heart failure hospitalization and related outcomes in type 2 diabetes mellitus: secondary analysis of a randomized clinical trial. JAMA Cardiol 1(2):126–135. https://doi.org/10.1001/jamacardio.2016.0103

    Article  PubMed  Google Scholar 

  77. Bailey CJ (2011) Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci 32(2):63–71. https://doi.org/10.1016/j.tips.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  78. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 302(1):R75–R83. https://doi.org/10.1152/ajpregu.00357.2011

    Article  CAS  PubMed  Google Scholar 

  79. Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, Broedl UC, Johansen OE (2016) Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension 68(6):1355–1364. https://doi.org/10.1161/HYPERTENSIONAHA.116.07703

    Article  CAS  PubMed  Google Scholar 

  80. Plosker GL (2012) Dapagliflozin: a review of its use in type 2 diabetes mellitus. Drugs 72(17):2289–2312. https://doi.org/10.2165/11209910-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  81. Lamos EM, Younk LM, Davis SN (2013) Canagliflozin, an inhibitor of sodium-glucose cotransporter 2, for the treatment of type 2 diabetes mellitus. Expert Opin Drug Metab Toxicol 9(6):763–775. https://doi.org/10.1517/17425255.2013.791282

    Article  CAS  PubMed  Google Scholar 

  82. Clar C, Gill JA, Court R, Waugh N (2012) Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open 2(5):e001007. https://doi.org/10.1136/bmjopen-2012-001007

    Article  PubMed  PubMed Central  Google Scholar 

  83. Scheen AJ (2014) Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet 53(3):213–225. https://doi.org/10.1007/s40262-013-0126-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  85. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B, EMPA-REG OUTCOME Investigators (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334. https://doi.org/10.1056/NEJMoa1515920

    Article  CAS  PubMed  Google Scholar 

  86. Inzucchi SE, Fitchett D, Wanner C, et al (2017) Reduction in cardiovascular (CV) death with empagliflozin is consistent across categories of baseline HbA1c and change in HbA1c: results from EMPA-REG OUTCOME. Am Diabetes Assoc

  87. Fitchett D, Mcknight J, Lee J, et al (2017) Empagliflozin (EMPA) reduces heart failure irrespective of control of blood pressure (BP), low density lipoprotein cholesterol (LDL-C), and HbA1c. Am Diabetes Assoc

  88. Kosiborod M, Cavender MA, AZ F et al (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose (cotransporter-2 inhibitors)). Circulation 136(3):249–259. https://doi.org/10.1161/CIRCULATIONAHA.117.029190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Birkeland KI, Jørgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, Fenici P, Nathanson D, Nyström T, Eriksson JW, Bodegård J, Norhammar A (2017) Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol 5(9):709–717. https://doi.org/10.1016/S2213-8587(17)30258-9

    Article  CAS  PubMed  Google Scholar 

  90. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, CANVAS Program Collaborative Group (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657. https://doi.org/10.1056/NEJMoa1611925

    Article  CAS  PubMed  Google Scholar 

  91. Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-G\glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2(9):1025–1029. https://doi.org/10.1001/jamacardio.2017.2275

    Article  PubMed  Google Scholar 

  92. Sattar N, Petrie MC, Zinman B, Januzzi JL (2017) Novel diabetes drugs and the cardiovascular specialist. J Am Coll Cardiol 69(21):2646–2656. https://doi.org/10.1016/j.jacc.2017.04.014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabea Asleh.

Ethics declarations

Conflict of interest

RA, AB, and SSK declare that they have no conflict of interest. MSA has received consulting fees or a speaker honorarium from Eli Lilly, Sanofi, AstraZeneca, Novo Nordisk, Boehringer Ingelheim, Novartis, and MSD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asleh, R., Sheikh-Ahmad, M., Briasoulis, A. et al. The influence of anti-hyperglycemic drug therapy on cardiovascular and heart failure outcomes in patients with type 2 diabetes mellitus. Heart Fail Rev 23, 445–459 (2018). https://doi.org/10.1007/s10741-017-9666-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9666-8

Keywords

Navigation