Skip to main content
Log in

Genome-wide analysis of HAK/KUP/KT potassium transporter genes in banana (Musa acuminata L.) and their tissue-specific expression profiles under potassium stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Potassium is one of the most essential inorganic cations for plant growth and development. The high affinity K+ (HAK)/K+ uptake (KUP)/K+ transporter (KT) family plays essential roles in the regulation of cellular K+ levels and the maintenance of osmotic balance. However, the roles of these genes in the responses of bananas to low-potassium stress are unclear. In this study, 24 HAK/KUP/KT (MaHAK) genes were identified from banana. These genes were further classified into four groups based on phylogenetic analysis, gene structure and conserved domain analysis. Segmental duplication events played an important role in the expansion of the MaHAK gene family. Transcriptome analysis revealed the expression patterns of MaHAKs in various tissues under different K+ conditions. MaHAK14b was upregulated under both short- and long-term K+-deficient conditions, suggesting that it plays crucial roles in K+ uptake at low K+ concentrations. Furthermore, MaHAK14b mediated K+ uptake when it was heterologously expressed in the yeast mutant R5421 on low K+ medium. Collectively, these findings provide a foundation for further functional analysis of MaHAK genes, which may be used to improve potassium stress resistance in bananas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134(3):1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeem F, Ahmad B, Atif RM, Ali MA, Nadeem H, Hussain S, Manzoor H, Azeem M, Afzal M (2018) Genome-wide analysis of potassium transport-related genes in Chickpea (Cicer arietinum L.) and their role in abiotic stress responses. Plant Mol Biol Rep 36(3):451–468

    Article  CAS  Google Scholar 

  • Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G (2015) Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ 38(12):2747–2765

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q (2017) OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci 8:1885

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen NWG, Thareau V, Ribeiro T, Magdelenat G, Ashfield T, Innes RW, Pedrosa-Harand A, Geffroy V (2018) Common bean subtelomeres are hot spots of recombination and favor resistance gene evolution. Front Plant Sci 9:1185

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Liu X, Mao W, Zhang X, Chen S, Zhan K, Bi H, Xu H (2018) Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L.). Int J Mol Sci 19(12):3969

    Article  PubMed Central  Google Scholar 

  • Epstein W, Kim BS (1971) Potassium transport loci in Escherichia coli K-12. J Bacteriol 108(2):639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gierth M, Maser P (2007) Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280(5):437–452

    Article  CAS  PubMed  Google Scholar 

  • Han M, Wu W, Wu WH, Wang Y (2016) Potassium transporter KUP7 is involved in K(+) acquisition and translocation in Arabidopsis root under K(+)-limited conditions. Mol Plant 9(3):437–446

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Nahar K, Hossain M, Mahmud J, Hossen M, Masud A, Fujita M (2018) Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8(3):31

    Article  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26(8):3387–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Peng LR, Xie CY, Shi XQ, Dong CX, Shen QR, Xu YC (2018a) Genome-wide identification, characterization, and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+ deficient and abiotic stress responses in pear rootstock seedlings. Plant Growth Regul 85:187–198

    Article  CAS  Google Scholar 

  • Li W, Xu G, Alli A, Yu L (2018b) Plant HAK/KUP/KT K(+) transporters: function and regulation. Semin Cell Dev Biol 74:133–141

    Article  CAS  PubMed  Google Scholar 

  • Li P, Luo T, Pu XJ, Zhou Y, Yu JN, Liu L (2021) Plant transporters: roles in stress responses and effects on growth and development. Plant Growth Regul 93:253–266

    Article  CAS  Google Scholar 

  • Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16(4):510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou W, Mao X, Huang C, Tie W, Yan Y, Ding Z, Wu C, Xia Z, Wang W, Zhou S, Li K, Hu W (2018) Genome-wide identification and expression analysis of the KUP family under abiotic stress in Cassava (Manihot esculenta Crantz). Front Physiol 9:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133(4):670–681

    Article  CAS  PubMed  Google Scholar 

  • Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K(+) transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol 153(2):863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YJ, Wu WH, Wang Y (2019) ZmHAK5 and ZmHAK1 function in K(+) uptake and distribution in maize under low K(+) conditions. J Integr Plant Biol 61(6):691–705

    Article  CAS  PubMed  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13(1):139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufyikiri G, Genon JG, Dufey JE, Delvaux B (2003) Competitive adsorption of hydrogen, calcium, potassium, magnesium, and aluminum on banana roots: experimental data and modeling. J Plant Nutr 26(2):351–368

    Article  CAS  Google Scholar 

  • Schilling S, Kennedy A, Pan S, Jermiin LS, Melzer R (2020) Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. New Phytol 225(1):511–529

    Article  CAS  PubMed  Google Scholar 

  • Song ZZ, Ma RJ, Yu ML (2015) Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica). Genet Mol Res 14(1):774–787

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zeng C-B, He R, Yan Z, Qi Z, Xiong R, Cheng Y, Wei S-S, Tang H (2019) Transcriptome analysis of banana (Musa acuminate L.) in response to low-potassium stress. Agronomy 9(4):169

    Article  Google Scholar 

  • Yang Z, Gao Q, Sun C, Li W, Gu S, Xu C (2009) Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). J Genet Genomics 36(3):161–172

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166(2):945–959

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang J, Chen Y, Li R, Wang H, Wei J (2012) Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol Biol Rep 39(8):8465–8473

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the Guangdong Basic and Applied Basic Research Foundation (2020A1515110731), Guangdong Science and technology planning project (2021A0505030049), the Director Fund of the Institute of Fruit Research, Guangdong Academy of Agricultural Sciences, the Special Fund for Scientific Innovation Strategy–Construction of High Level Academy of Agriculture Science (R2018QD-021), the Special Fund Project for Talent Introduction of Guangdong Academy of Agriculture Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests.

Additional information

Communicated by Luca Sebastiani .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wu, B., Xie, Y. et al. Genome-wide analysis of HAK/KUP/KT potassium transporter genes in banana (Musa acuminata L.) and their tissue-specific expression profiles under potassium stress. Plant Growth Regul 97, 51–60 (2022). https://doi.org/10.1007/s10725-021-00793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00793-7

Keywords

Navigation