Skip to main content
Log in

Characterization and expression profile analysis of YABBY family genes in Pak-choi (Brassica rapa ssp. chinensis) under abiotic stresses and hormone treatments

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

YABBY proteins are widely distributed among different plant species and exhibit a higher degree of prevalence in angiosperms than in gymnosperms; abaxial cell fate in the lateral organs of plants is mainly determined by the functions of YABBY genes. However, to date, no scientific study has been conducted on the functions and responses of these genes under different forms of abiotic stresses in Pak-choi (Brassica rapa ssp. chinensis). In this study, we cloned and identified 12 YABBY family genes from Pak-choi. The evolutionary history of the YABBY genes was studied in nine species and showed that YABBY gene loss occurred during specific periods or in certain species during evolution. The putative YABBY family genes of Pak-choi were comprehensively analyzed by comparison with the corresponding orthologs in Arabidopsis and Chinese cabbage (Brassica rapa ssp. pekinensis) and classified into five subfamilies based on the specific protein domains and phylogenetic clades. A subcellular localization assay involving BcYABBY1b and BcYABBY2c confirmed that the BcYABBY proteins were localized in the nucleus. qRT-PCR data revealed that the BcYABBY genes are specifically expressed in distinct organs and developmental stages. Furthermore, the expression profiles of the BcYABBY genes were investigated under different hormone treatments and abiotic stress factors. In this study, we comprehensively identified and analyzed the YABBY gene family in the Pak-choi genome. Our data provide possible functional information regarding the involvement of BcYABBY genes in plant growth and development and in the response to abiotic stress and hormone treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey TL et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartley GE, Ishida BK (2002) Digital fruit ripening: data mining in the TIGR tomato gene index. Plant Mol Biol Rep 20:115–130

    Article  CAS  Google Scholar 

  • Bartley GE, Ishida BK (2003) Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis. BMC Plant Biol 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartley GE, Ishida BK (2007) Ethylene-sensitive and insensitive regulation of transcription factor expression during in vitro tomato sepal ripening. J Exp Bot 58:2043–2051

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    CAS  PubMed  Google Scholar 

  • Chen C, Xia R, Chen H, He Y (2018) TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv. https://doi.org/10.1101/289660

    Article  Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Liang J, Wang X (2014) Genome triplication drove the diversification of brassica plants. Hortic Res 1:14024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou D-X (2007a) The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144:121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai MQ, Hu YF, Zhao Y, Liu HF, Zhou DX (2007b) A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol 144:380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery JF et al (2003) Radial patterning of Arabidopsis shoots by class IIIHD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Jian W, Lu F, Xiaowu W (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Google Scholar 

  • Finet C, Floyd SK, Conway SJ, Zhong B, Scutt CP, Bowman JL (2016) Evolution of the YABBY gene family in seed plants. Evol Dev 18:116–126

    Article  PubMed  Google Scholar 

  • Franks RG (2010) The molecular organography of plants. Quentin C.B. Cronk integrative and comparative. Biology 50:144–145

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Golz JF, Roccaro M, Kuzoff R, Hudson A (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131:3661–3670

    Article  CAS  PubMed  Google Scholar 

  • Huang ZJ, Van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genom 288:111–129

    Article  CAS  Google Scholar 

  • Jonsell B (1991) Weberling, F. 1989. Morphology of flowers and inflorescences. Nord J Bot 11:496–496

    Article  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Pham T, Hamidi A, Mccormick S, Kuzoff RK, Sinha N (2003) Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development 130:4405

    Article  CAS  PubMed  Google Scholar 

  • Liu H-l, Xu Y-Y, Xu Z-H, Chong K (2007) A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol 217:629–637

    Article  CAS  PubMed  Google Scholar 

  • Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126:469–481

    CAS  PubMed  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  CAS  PubMed  Google Scholar 

  • Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains (vol 13, pg 1079, 1999). Gene Dev 13:2337

    Article  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    CAS  PubMed  Google Scholar 

  • Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF (2009) YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell 21:3105–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka W et al (2012) The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell 24:80–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong C et al (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom 14:689

    Article  CAS  Google Scholar 

  • Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genom 277:457–468

    Article  CAS  Google Scholar 

  • Villanueva JM, Pohl J, Doetsch PW, Marzilli LG (1999) The mutagenic damaged DNA base, 5,6-dihydrouracil (DHU), incorporated into a 14-mer duplex: NMR evidence that DHU is intrahelical and causes minimal DNA distortion. J Am Chem Soc 121:10652–10653

    Article  CAS  Google Scholar 

  • Waites R, Hudson A (1995) Phantastica—a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Wang X et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Ito M, Kato M (2004) YABBY2-homologue expression in lateral organs of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:917–924

    Article  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Key Research and Development Program of China (Grant No. 2016YFD0101701) and the Science and Technology Pillar Program of Jiangsu Province (Grant No. BE2013429).

Author information

Authors and Affiliations

Authors

Contributions

H-LH and X-LH conceived the project. H-LH and PW retrieved the datasets from the databases and analyzed the data. H-LH carried out the gene cloning and qRT-PCR experiments. C-WZ provided advice on the manuscript. PW, L-WG and C-WZ revised and proofread the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xilin Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2019_475_MOESM1_ESM.jpg

Supplementary Figure S1 Distribution ofBrYABBYgenes on 6 chromosomes. The 24 ancestral blocks and three subgenomes of Chinese cabbage were plotted, based on the Chinese cabbage genome sequencing analysis result and the size of each chromosome can be estimated by the scale on the left of the figure. The different colored bars represent different subgenomes (LF, MF1, and MF2) (JPG 254 KB)

10725_2019_475_MOESM2_ESM.jpg

Supplementary Figure S2 YABBY homologous genes in segmental syntenic regions of the genomes ofBrassica rapaandArabidopsis thaliana. The ten B. rapa chromosomes and the five A. thaliana chromosomes are shown on horizontal axis and vertical axis, respectively. Green dots indicate YABBY homologs in the two species (JPG 830 KB)

Supplementary Figure S3 Different motif LOGOs are indicated by different colors from 1 to 10 (JPG 2230 KB)

Supplementary Table S1 Primers used for RT-PCR and qRT-PCR (XLS 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Wu, P., Gao, L. et al. Characterization and expression profile analysis of YABBY family genes in Pak-choi (Brassica rapa ssp. chinensis) under abiotic stresses and hormone treatments. Plant Growth Regul 87, 421–432 (2019). https://doi.org/10.1007/s10725-019-00475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00475-5

Keywords

Navigation